An Application of Escape Theory to Binge Eating

Sonja Blackburn1, Lucy Johnston1,*, Neville Blampied1, Danielle Popp3 and Rachel Kallen2

1University of Canterbury, Private Bag 4800, Christchurch, New Zealand
2University of Connecticut, Connecticut, USA
3Florida Atlantic University, Florida, USA

The application of Escape Theory (Heatherton & Baumeister, 1991) to binge eating was studied in a non-clinical sample of 129 women. Structural equation modelling (SEM) showed a good fit between the Escape Model and the data. Perfectionism strongly predicted aversive self-awareness which, in turn, predicted negative affect. Negative affect predicted levels of avoidant coping which strongly predicted levels of binge eating. Implications for understanding and treating binge eating are considered. Copyright © 2006 John Wiley & Sons, Ltd and Eating Disorders Association.

Keywords: binge eating; Escape Model

INTRODUCTION

Binge eating is recognised as a significant problem within modern western societies. Although often conceptualised as a symptom of clinical syndromes such as bulimia nervosa and anorexia nervosa, binge eating has a unique definition (Diagnostic and Statistical Manual of Mental Disorders, (DSM IV-TR); American Psychiatric Association (APA), 2000). There is growing evidence that binge eating frequently occurs in the absence of other eating disorder diagnoses, and is perhaps best thought of as lying along a continuum of normal to disordered eating (Thelan, Mann, Pruitt, & Smith, 1987).

Estimates of prevalence rates for binge eating disorder (BED) range from 2\% to 5\% (Bruce & Agras, 1992; Fairburn, Hay, & Welch, 1993; Spitzer et al., 1993) but binge eating that occurs less frequently than the twice-weekly BED diagnostic requirement is far more common, with estimates of prevalence as high as 26\% (Cooper & Fairburn, 1983), and 30\% in samples from weight control programmes (Brody, Walsh, & Devlin, 1994; Spitzer et al., 1992). The importance of understanding the underlying causal processes of binge eating is well recognised, particularly with reference to how this guides treatment and prevention strategies.

Heatherton and Baumeister’s (1991) Escape Model (see Figure 1) offered a promising contribution to understanding the causal mechanisms underlying binge eating, emphasizing the function that binge eating serves for an individual. What is striking, however, is that while this model is well cited in the literature, relatively few studies have directly tested its applicability to binge eating. The present study specifically tested the applicability of Escape theory in a non-clinical sample of women who binge eat, using structural equation modelling (SEM). SEM provided a means to distinguish sequential relations within the model and also to test the goodness of fit between the data and the hypothesized model, through simultaneously testing various pathways within the model. SEM is a largely a confirmatory, rather than exploratory, technique. That is, SEM is used to determine whether a certain model is valid, rather than to find a suitable model. A structural equation model implies a structure of the covariance matrix of the measures within the model.
Once the model’s parameters have been estimated, the resulting model-implied covariance matrix can then be compared to an empirical or data-based covariance matrix. If the two matrices are consistent with one another, then the structural equation model can be considered a plausible explanation for relations between the measures. Accordingly, we tested the theoretical model specified by Heatherton and Baumeister (1991) against the data collected from a sample of women who completed measures pertaining to the constructs of the Escape Model.

The Escape Model (Heatherton & Baumeister, 1991) is built on concepts drawn from theories of self-awareness and comparisons with one’s ideal self, and has been applied to a number of self-defeating behaviours, including binge eating (Baumeister & Scher, 1988; Heatherton & Baumeister, 1991), sexual masochism (Baumeister, 1990) and suicide (Heatherton & Baumeister, 1991). Although not an inherently aversive state, self-awareness can be burdensome, particularly when an individual has high, demanding, even perfectionist, standards and becomes aware that they are failing to meet their personal goals and ideals (Duval & Wicklund, 1972). If these discrepancies are then attributed to internal aspects of the self, the individual is likely to experience negative affect, which is an aversive state. Individuals are motivated to escape this negative affective state. The Escape Model provides a framework for viewing how individuals might escape the aversive negative affective state.

Each of the steps in the Escape Model is viewed as a choice point in a decision tree, with bingeing only occurring if each step produces a particular outcome (Heatherton & Baumeister, 1991). Perfectionist standards per se are unlikely to lead to binge eating. If, however, these perfectionist standards result in evaluative interpretations that highlight perceived shortcomings which are attributed to aspects of the self (rather than to external factors), so creating a state of negative self-awareness, negative affect is likely to ensue. The individual is then motivated to escape this negative affect. One way to reduce negative affect is by directly reducing self-awareness such that discrepancies between the self and relevant standards are no longer salient (Duval & Wicklund, 1972). This reduction of self-awareness, or cognitive narrowing, is the type of escape considered in the Escape Model.

The central claim of the Escape Model is that self-awareness is reduced by cognitive narrowing, through a focusing of attention on concrete aspects of the immediate environment (Baumeister, 1990). In such a state, it is argued, meaningful interpretations such as attributions, comparisons against standards and implications of one’s actions are no longer readily accessible, and accordingly negative affect is likely to be alleviated. That is, cognitive narrowing leads to a reduction in, or escape from, the aversive state of negative affect felt by an individual as a consequence of heightened self-awareness.

This escape from negative affect may however precipitate a cascade of self-defeating behaviours, such as binge eating. Efforts to escape from unpleasant feelings through cognitive narrowing may erode the usual inhibitions around food (or any other self-destructive behaviour), making the susceptible person more willing to break their dietary rules, and may facilitate further escape through narrowing attention to the actions and sensations involved with eating. With additional cognitive narrowing prior inhibitions around eating are eroded, and eating escalates into a full-blown binge episode. A binge episode is, then, a result of the escape from negative affect through cognitive narrowing, rather than a cause of that narrowing. Binge eating generally occurs within a context of aspirations to meet particular standards of weight or body image, and deliberate efforts to reduce weight. Individuals for whom physical appearance, body size, shape and weight are important features of the self are likely to engage in dietary restraint of some form. Accordingly, for these individuals, cognitive narrowing will reduce the usual restraints and inhibitions around eating, and increase susceptibility to binge eating as a consequence of escape from negative affect through cognitive narrowing. Further, the binge episode may provide the individual with an opportunity to attribute their negative affect to the binge episode rather than to the original (internal) source of distress and state of negative affect from which the individual was trying to escape (Polivy & Herman, 1999), hence perpetuating the long-term problem.

Past research has furnished much information about the differences between the binge-prone individual and the non-binger on those characteristics identified in the Escape Model. Most research has focused on a single factor within the Escape Model, although some researchers have shown binge-eaters to fit a profile of an escape-prone individual based in the Escape Model—that is, relative to non-bingers, to be high on depression, anxiety, self-focus and perfectionism, and to show a disposition to resorting to cognitive narrowing of attention but to be low in self-esteem (Beebe, Holmbeck, Albright, Noga, & Decastro, 1995; Striegel-Moore, Silberstein, & Rodin, 1995, 1999).
1993; but see Tassava & Rudeman, 1999, for a contrary view).

Most research has only considered individual components of the model. We briefly consider the findings for each of the components of the model—perfectionism, negative self-awareness, negative affect and cognitive narrowing. There is a robust association between perfectionism and binge eating (Fairburn et al., 1998; Fairburn, Cooper, Doll, & Welch, 1999), although the influence of perfectionism is mediated by other psychological factors including self-esteem, consistent with the Escape Model (Pratt, Telch, Labouvie, Wilson, & Agras, 2001; Vohs, Bardone, Joiner, & Abramson, 1999) and anxiety (Davis, Claridge, & Fox, 2000). There is considerable evidence that binge eating is associated with lower levels of self-esteem (Eldredge, Wilson, & Whaley, 1990; Gross & Rosen, 1988; Katzman & Wolchik, 1984; Mizes, 1988; Ross & Ivis, 1999), although whether this lowered self-esteem is accompanied by a heightened sense of self-focus, as suggested by the Escape Model, is less clear (Beebe et al., 1995; Striegel-Moore et al., 1993; Tassava & Ruderman, 1999). Negative affect is a salient predictor of bulimic behaviours in adolescent girls (Stice & Agras 1998), and of binge eating in overweight women (Agras & Telch, 1998), although this relationship is moderated by the tendency to use disengagement as a coping style (Henderson & Huon, 2002). Not all forms of emotional distress trigger binge eating, however, only those which threaten self-esteem (Heatherton & Baumeister, 1991; Heatherton et al., 1991), which is consistent with the Escape Model. Supporting evidence for the cognitive narrowing or deconstruction process in binge-eaters is indirect. Binge-eaters are characterised by a greater level of dichotomous thinking than control subjects; they are more susceptible to salient external cues than internal cues, eat unusual and unpalatable foods during a binge episode, and frequently report feeling numb during a binge episode (Paxton & Diggens, 1997), eating patterns that could be considered to be indicative of a state of mind in which meaningful thought has been blocked. Individuals with eating disorders have also been shown to use more avoidant coping strategies than controls (Ball & Lee, 2000).

While this literature does provide some evidence that binge-eaters have an escape-prone personality, little attention has been paid to the processes leading up to bingeing. Paxton and Diggens (1997) did consider the extent to which aversive self-awareness, negative affect and avoidance behaviours predicted binge eating. They concluded that the power of avoidant coping to predict bingeing was dependent on levels of negative affect, consistent with the Escape Model. However, there has not been any research that has tested the full Escape Model, and the relationships between each of the constructs, with binge-eaters. This is the aim of the present research.

Our study provides a more rigorous test of the Escape Model with respect to binge eating. We measured the various elements of the Escape Model amongst a non-clinical sample of self-defined female dieters and used SEM to test the fit of the data to the Escape Model. We recruited participants who defined themselves as dieters since the incidence of binge eating is reported to be higher amongst those attempting to control their weight (Brody et al., 1994; Spitzer et al., 1992). Our assessment measures for the components of the Escape Model, as described below, were selected after review of the relevant past literature.

METHOD

Participants

Women who identified themselves as dieters were recruited via advertisements on campus and in community newspapers. As an incentive, participants were entered into a prize draw. Of the 180 questionnaires distributed, 145 were returned, giving a very high response rate of 81%. The data from 16 women were however excluded as a consequence of errors or omissions in the completion of the questionnaires. The final sample contained 77 students and 52 non-students (community sample). Although all the participants identified themselves as dieters there was a wide range of scores on a measure of restrained eating—The Dutch Eating Behaviour Questionnaire (DEBQ-Res.; Van Strein et al., 1986). Scores ranged from 11 to 50 (possible range is from 10 to 50) and were normally distributed about a mean of 33.69. The women had a mean age of 29 years and 11 months (range 18–64 years), with a higher mean for the community than the student sample (Ms = 41.08 vs. 22.33 years; t(127) = 11.66, p < 0.01). The mean Body Mass Index (BMI) for the sample was 25.54, but this was also significantly higher for the community than the student sample (Ms = 28.89 vs. 23.25; t(121) = 6.46, p < 0.01). Overall the range of BMI in our sample was from 17.53 to 41.40 and the mean BMI 25.54. Twelve participants (9%) has a BMI of less than 20, 89 participants (69%) a BMI of between...
20 and 30, and 21 participants (17%) a BMI of greater than 30.

Materials

A battery of questionnaires was compiled to measure the components of the Escape Model—perfectionism, aversive self-awareness, negative affect, cognitive narrowing and binge eating—as detailed below.1

Perfectionism was measured using the Positive and Negative Perfectionism Scale (PANPS; Terry-Short, Owens, Slade, & Dewey, 1995). This scale is a 40-item measure of perfectionism which comprises two subtypes of perfectionist behaviour—that which arises as a function of positive reinforcement (positive perfectionism), and that which arises as a function of negative reinforcement (negative perfectionism).

Aversive self-awareness was measured using two subscales of the self-consciousness scale-revised (SCSR; Fenigstein, Scheier, & Buss, 1975). This scale incorporates three subscales, public self-consciousness (awareness of the reaction of others to the self), private self-consciousness (attention to one’s inner thoughts and feelings) and social anxiety (discomfort in the presence of others), though only the public and private self-consciousness sub-scales were used as our measure of aversive self-awareness, consistent with past research (Eichstaedt & Silvia, 2003).

Negative Affect was measured using the Hospital Anxiety and Depression Questionnaire (HADS; Zigmond & Snaith, 1983), a 14-item scale designed as a brief measure of the presence and severity of both anxiety and depression symptoms. As its performance as a screening device is enhanced when scores on the two subscales are summed (Ravazi, Delvaux, Farvacques, & Robaye, 1990), we used a total score across the two subscales as our measure of negative affect. The HADS differs from other measures of mood state primarily in its reliance on anhedonia as a symptom, rather than somatic symptoms such as loss of energy or tiredness. This shift in emphasis is based on the idea that symptoms such as low energy, fatigue and sleep disturbance may be attributable to physical illness rather than to mood state per se (Zigmond & Snaith, 1983). This rationale makes the HADS an appropriate measure for populations with restricted or disordered eating patterns, as symptoms such as fatigue and flagging energy may indeed be an artefact of disrupted eating patterns, rather than a reflection of mood.

Cognitive Narrowing was measured using the avoidant coping subscales of the COPE (Carver, Scheier, & Weintraub, 1989). The COPE is a multidimensional inventory that can be used to assess both situational coping, and more general dispositional coping styles, through 13 distinct subscales. The concept of escape, through cognitive narrowing, described within the Escape Model of binge eating refers to a motivated attempt to avoid the negative feelings associated with aversive self-awareness. Heatherton et al. (1991) conceptualised this cognitive narrowing as an avoidant style of coping, a tendency to cope with situations by avoiding thinking about them. Typical strategies used to facilitate this process include alcohol use, distraction, mental and behavioural disengagement or indeed eating. Typically, coping strategies such as these focus on regulating the emotional response to stress, as opposed to focusing attention on the actual source of the stress.

In the present study, the dispositional version of the COPE was administered, and scores on the subscales measuring denial, mental disengagement, behavioural disengagement, and use of alcohol and drugs summed to provide a measure of avoidant coping. Denial refers to direct attempts made to deny the reality of the stressful event. Mental disengagement refers to psychological disengagement from the goal that the stressor is interfering with through methods such as daydreaming, sleeping or self-distraction. Behavioural disengagement refers to a tendency to give up or withdraw effort from any attempts to attain the goal that the stressor is interfering with.

Bingeing was assessed using the binge scale of the Bulimia Test (BULIT; Smith & Thelen, 1984). The BULIT was constructed by comparing responses of both bulimic subjects and female college students against clinical judgments based on diagnostic interviews. Scale scores were found to be a reliable predictor of individual bulimic symptoms when compared against independent clinical interviews. The Binge subscale contains 14 items pertaining to actual bingeing behaviour, such as the amount of food consumed, speed of eating and eating to point of physical discomfort as well as items relating to loss of control over eating.

Procedure

Participants were mailed a test booklet comprising the questionnaires detailed above, a demographic data sheet, and an information sheet and consent

1 Participants also completed the DEBQ as detailed above and the Rosenberg Self-Esteem Scale (RSE; Rosenberg, 1965). As the RSE was not a measure of any of the components of the Escape Model, however, it is not reported here. Full details of this measure can be obtained from the corresponding author.
form, and a prepaid reply envelope. To control for practice or priming effects, different versions of the booklet were developed by counter-balancing the order of the questionnaires.

RESULTS

Means and standard deviations for each of the measured variables are presented in Table 1.

Scores on all of the reported measures were normally distributed. Comparisons (t-tests) of the student and community samples on each measure revealed only two significant differences. Given the relatively few differences between these two sample groups, however, they were combined for the SEM analysis. The student sample scored higher on the self-consciousness scale (SCSR) than did the community sample (t(127) = 2.06, p < 0.05; Ms = 41.95 vs. 38.37), indicating that the student group had a higher degree of self-consciousness on average than the community group. The community sample scored higher on the BULIT measure of binge eating (t(127) = 2.84, p < 0.05; Ms = 35.96 vs. 30.55), indicating that the community sample reported more bingeing-related behaviours than did the student group.

To distinguish between those women who binged occasionally and those who represented the upper spectrum of bingeing behaviour, a cut-off score derived from the normative mean plus one standard deviation (Stein & Brinza, 1989) classified women scoring above 34 as high binge-eaters and those scoring 34 or below as low binge-eaters. The majority of women in our sample were, accordingly, occasional bingers, but some 51 (39.5%) did score above 34, indicative of being within the upper spectrum of bingeing behaviour. Further, it should be noted that within the student population 31% scored above 34 on the BULIT, but within the community sample some 52% scored above 34.

Using the analysis of moment structures (AMOS) software, we tested the theoretical predictions of Heatherton and Baumeister’s Escape Model. As we were testing a predetermined theoretical model (see Figure 1), we did not make any re-specifications

Table 1. Means and standard deviations for all variables

<table>
<thead>
<tr>
<th></th>
<th>Total Sample N = 129</th>
<th>Community subset N = 52</th>
<th>Student subset N = 77</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>Mean</td>
</tr>
<tr>
<td>Perfectionism</td>
<td>134.63</td>
<td>20.38</td>
<td>133.71</td>
</tr>
<tr>
<td>Aversive self-awareness</td>
<td>30.91</td>
<td>7.98</td>
<td>28.75</td>
</tr>
<tr>
<td>Negative affect</td>
<td>13.74</td>
<td>6.19</td>
<td>14.21</td>
</tr>
<tr>
<td>Avoidant coping</td>
<td>27.87</td>
<td>6.18</td>
<td>27.25</td>
</tr>
<tr>
<td>Binge eating</td>
<td>32.73</td>
<td>10.91</td>
<td>35.96</td>
</tr>
</tbody>
</table>

Figure 1. The Escape Model, applied to binge eating (after Heatherton & Baumeister, 1991)

Figure 2. Structural Model
to the model. The structural model tested is shown in Figure 2. The input to the analysis was the observed data from our sample and there was no missing data. The covariance matrix is shown in Table 2. There were five observed, endogenous variables—negative affect (measured by the HADS), cognitive narrowing (measured by the COPE), binge eating (measured by the BULIT), and public and private self-consciousness (measured by subscales of the SCSR)—and one observed exogenous variable—perfectionism (measured by the PANPS). There was a single unobserved endogenous variable—aversive self-awareness—that was composed of indicators representing the measured variables of public and private self-consciousness. Higher aversive self-awareness predicted higher public (standardized co-efficient $= 0.55$) and private (standardized co-efficient $= 0.44$) self-consciousness, and public and private self-consciousness were correlated at $r(129) = 0.544$, $p < 0.001$.

Support was found for the hypothesised model in terms of the χ^2 test statistic, $\chi^2(7) = 12.18$, $p < 0.095$, the comparative fit index (CFI), CFI = 0.97, and the root mean square error of approximation (RMSEA); RMSEA = 0.076, PCLOSE = 0.235.

The standardised regression coefficients are shown in Figure 3. All of the path coefficients between model variables were highly significant ($p < 0.001$). Perfectionism was strongly predictive of aversive self-awareness (standardised co-efficient = 0.91). In turn aversive self-awareness was predictive of negative affect (standardised co-efficient = 0.52) and negative affect of cognitive narrowing (standardised co-efficient = 0.83). Cognitive narrowing was very strongly predictive of binge eating (standardised co-efficient = 0.95). In addition, there was also a negative path coefficient between binge eating and cognitive narrowing (standardised co-efficient = -0.94).

DISCUSSION

The present research tested the applicability of the Escape Model (Heatherton & Baumeister, 1991) to binge eating in a non-clinical sample of women. Our participants were assessed on each of the factors in the Escape Model and then SEM was used to estimate the goodness of fit of the model to the observed data. Our analyses demonstrated that the Escape Model was indeed a good fit to the data, suggesting that the model does provide a framework for understanding the causal processes leading to binge eating and explaining the function binge eating serves for an individual.

The individual path coefficients offered support for the relationships between the model variables predicted in the Escape model—stronger perfectionist ideals lead to higher levels of aversive self-awareness which, in turn, lead to higher negative

Table 2. Covariances between model variables

<table>
<thead>
<tr>
<th></th>
<th>PANPS</th>
<th>HADS</th>
<th>BULIT</th>
<th>COPE</th>
<th>PRIVATE</th>
<th>PUBLIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PANPS</td>
<td>412.249</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HADS</td>
<td>59.742</td>
<td>37.973</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BULIT</td>
<td>54.651</td>
<td>27.977</td>
<td>118.089</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COPE</td>
<td>42.656</td>
<td>16.594</td>
<td>10.143</td>
<td>37.866</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRIVATE</td>
<td>38.586</td>
<td>10.122</td>
<td>1.971</td>
<td>5.105</td>
<td>23.775</td>
<td></td>
</tr>
<tr>
<td>PUBLIC</td>
<td>45.142</td>
<td>6.740</td>
<td>5.572</td>
<td>4.218</td>
<td>11.061</td>
<td>17.359</td>
</tr>
</tbody>
</table>
affect. Higher negative affect lead to greater cognitive narrowing, which is consistent with the individual attempting to escape from feelings of negative affect. Cognitive narrowing then predicted levels of binge eating. It is important to also note that there was support for the bi-directional nature of the relationship between cognitive narrowing and binge eating. However, the relationship between binge eating and cognitive narrowing was a negative one. Higher levels of binge eating predicted lower levels of cognitive narrowing. Rather than binge eating and cognitive narrowing operating in negative feedback cycle, our data suggest that binge eating reduces cognitive narrowing. This may, however, lead to enhanced negative self-awareness and a perpetuation of the negative affect-cognitive narrowing-binge eating cycle. The nature of this relationship warrants further research. One issue worthy of further investigating is the role of purging behaviour. It is possible that purging after bingeing may result in an individual feeling ‘empty and clean’ and a reduction of negative affect, leading to a reduction in cognitive narrowing and binge eating. Alternatively, however, purging may increase aversive self-awareness in a manner similar to binge eating itself and so perpetuate the negative cycle predicted by the Escape Model. Given the close links between bingeing and purging it is important for future research to consider the incidence, and impact of, purging as well as binge-eating behaviour.

Overall the goodness of fit of the Escape Model to our data was high and each of the path coefficients between model variables was highly significant. The path between aversive self-awareness and negative affect was, however, relatively weak. Aversive self-awareness was the only exogenous variable in our model. That is, it was the only measure that was derived indirectly through more than one measurement of other constructs (public and private self-consciousness) rather than derived directly from a single measure. We were guided in our choice of measurement tools for this variable, and indeed for all our variables, by past literature, but future research may consider whether aversive self-awareness might be better captured by an alternative measure, or measures, which would, in turn, increase the path coefficient to negative affect. The measures used in the present study—public and private self-consciousness—may focus too strongly on the self-awareness component of negative self-awareness, whether that be on awareness of one’s own feelings (private self-consciousness) or the reactions of others (public self-consciousness), rather than on the evaluation of that awareness. Inclusion of some measure of the extent to which this self-awareness is unpleasant for the individual may create a stronger measure of aversive self-awareness than is available in the present study. The relative weighting of private and public self-evaluation might also be considered within the population of binge-eaters. In the present research, the contributions of private and public self-consciousness to the measure of negative self-awareness were equally weighted, but it is possible that in the context of binge eating private self-consciousness may be of greater importance (since many binge episodes are conducted in private) and so the contribution of private self-consciousness should be greater than that of public self-consciousness in the measurement of negative self-awareness.

In the development of the Escape Model (Heatherton & Baumeister, 1991), it was assumed that dietary restraint was an important precursor to binge eating. Accordingly, our sample was recruited from women who self-identified as dieters. However, our participants’ scores on a measure of restrained eating—The Dutch Eating Behaviour Questionnaire (DEBQ-Res.; Van Strein et al., 1986)—covered the entire range of possible scores and were normally distributed. Further, there was no significant correlation between level of dietary restraint and level of binge-eating ($r(129) = 0.073$). This seeming independence of dieting and bingeing challenges the assumption of the Escape Model that dietary restraint is an important precursor to binge eating and suggests that the Escape Model can predict binge eating behaviours regardless of level of dietary restraint. Whilst the Escape Model may apply to binge eating irrespective of dieting status, co-existing dietary restraint may still serve to exacerbate the conditions that lead to emotional distress hence creating a wider range of conditions promoting escape and more powerful motivation for escape. Whether a self definition of being a dieter, regardless of actual levels of dietary restraint, as in the present sample, is an important factor is unclear and further research is needed in which the Escape Model for binge eating is tested amongst a wider sample, including both those who do not self-define as dieters and also male participants. Indeed, it should be noted that even within female dieters our sample was largely restricted to those of normal weight (as indexed by BMI) and further consideration needs to be given to dieters who are of high or low weight as this may give rise to higher levels of negative affect.

It is noteworthy that our participants were a community-based sample, either drawn from a student population or a wider community-based sample.
population. The only criterion for inclusion in our sample was a self-definition as a ‘dieter,’ although as seen from scores on the DEBQ-Res the women in our sample showed a wide range of dieting levels. The incidence of upper-level binge eating (Stein & Brinza, 1989) in our sample (35%) is consistent with that seen in past research (Brody et al., 1994; Cooper & Fairburn, 1983; Spitzer et al., 1992). It is perhaps a little surprising that higher levels of binging were seen among the community than the student populations in our sample but given the voluntary nature of participation in the research and the self-definition of ‘dieter’ required for participation, we need to be cautious in over-interpreting this finding, but it is one that calls for future investigation.

In summary, this paper presents the first test of the Escape Model applied to binge eating using SEM. The high goodness of fit between the theoretical model and our data offers strong support for the use of the Escape Model in both explaining and predicting binge eating behaviour, and in the developments of interventions to reduce binge eating behaviour. This has implications for the clinical management of binge eating, suggesting that therapy must focus on alternative strategies for managing negative affect as much as on reducing dieting and controlling urges to binge. Current treatments focus on addressing erratic eating patterns and distorted cognitions surrounding weight and shape. Equally important, however, is the acknowledgement that a given behaviour, no matter how seemingly maladaptive, may provide an important function for the individual. Escape theory suggests that binge eating does indeed serve such a function, by providing a means of escape from distressing emotions that arise in the context of negative self-evaluation. It would seem reasonable, then, to assume that the cycle of negative self-evaluation and negative affect should be as much a focus of treatment as the bingeing behaviour itself. If these underlying causal mechanisms are left untreated then there is a risk that the individual will relapse or engage in potentially more destructive escapist behaviours. The reality of this risk has been borne out by research showing that over a period of time, reductions in disordered eating patterns were accompanied by increases in alcohol and drug abuse in bulimics and binge-eaters (Yager, Landsverk, Edelstein, & Jarvik, 1988). Long-term outcome may therefore be improved if current treatments were to incorporate strategies that interrupt the ruminative self-comparison process and offer more adaptive methods of dealing with emotional distress.

REFERENCES

An Application of Escape Theory

