elution with EtOAc–C₆H₆ (2.5:7.5) afforded 2α-hydroxyursolic acid, mp 243-44° R, 0.60 (MeOH-CHCl₃) (1:9), diacetate mp 197°, methyl ester mp 207-208°, [α]D +48 (1.1, CHCl₃), methyl ester acetate mp 143-145°. MS of the methyl ester showed M⁺ 486, 262 (DE ring fragment through RDA fission), 223 (AB ring fragment RDA), 203 (262-COOMe). NMR of methyl ester diacetate in CCl₄ showed δ 1.94 and 2.02 (OCOMe), 3.60 (COOMe) and a doublet at 4.68 (J 10 Hz) (C₂-H) indicating trans diaxial protons at C₂ and C₃. Confirmed by direct comparison (TLC, IR, NMR and MS). This is the second report of the occurrence of 2α-hydroxyursolic acid in Myrtaceae; the first [5] described its co-occurrence with maslinic acid in Psidium guajava leaves. The presence of compounds belonging to three related skeletons together in Callistemon is noteworthy.

Acknowledgements—The authors are grateful to Dr. D. K. Kulshreshtha, Central Drug Research Institute, Lucknow for kindly supplying a sample of methyl-2α-hydroxyursolate. One of the authors (RSV) is thankful to the CSIR, New Delhi for the award of a Junior Research Fellowship.

REFERENCES

Phytochemical Reports

3-ETHYL-7-HYDROXYPHTHALIDE FROM FORSYTHIA JAPONICA

HIROMU KAMEOKA, MITSUO MIYAZAWA and KANAME HAZE

Department of Applied Chemistry, Faculty of Science and Engineering, Kinki University, Kowakae, Higashiosaka-shi, Osaka, Japan

(Received 10 February 1975)

Key Word Index—Forsythia japonica; Oleaceae; essential oil; 3-ethyl-7-hydroxyphthalalde.

\[\text{HO} \quad \begin{array}{c} \text{CH}_3 \text{Me} \\ \text{O} \\ \text{O} \\ \text{C} \end{array} \]

The essential oil of the stem bark of F. japonica deposited a crystalline constituent, C₁₆H₁₀O₃, mp 78°; [α]D +1.87 (101%, in EtOH). UV λmax 235, 300 nm (log ε 2.34, 1.90) almost superimposable with that of synthetic 3-ethyl-7-hydroxyphthalalde [3]. NMR: δ(6) ppm (60 MHz, i.s. TMS) 1.03 (3H, t, -CH₂-Me), 1.89 (2H, m, -CH₂-Me), 5.35 (1H, t, -CH-O-CO-), 6.82 (2H, d, aromatic H), 7.44 (1H, t, aromatic H), 7.79 (1H, brod s. -OH). IR: νKBr 3500, 3020, 1740, 1605, 1470, 1195 cm⁻¹. MS: m/e (abundance %) 175 (37.8), 149 (100.0), 121 (33.5), 93 (11.7), 65 (16.5). The acetate (C₁₈H₁₄N₂O₄) was purified by Al₂O₃ column chromatography. NMR: δ(6) ppm 0.99 (3H, t, -CH₂-Me), 1.88 (2H, m, -CH₂-Me), 2.34 (3H, s, -O-CO-Me), 5.24 (1H, t, -CH-O-CO-), 7.08 (2H, t, aromatic H), 7.55 (1H, t, aromatic H). IR: νmax 1760, 1370, 1189 cm⁻¹. Methylation with CH₂N₂ gave the ether. NMR: δ(6) ppm (60 MHz, i.s. TMS) 0.99 (3H, t, -CH₂-Me), 1.88 (2H, m, -CH₂-Me), 3.95 (3H, s, -O-Me), 5.22 (1H, t, -CH-O-CO-), 6.86 (2H, d, aromatic H), 7.52 (1H, t, aromatic H). IR: νmax 1288, 1040 cm⁻¹. MS: m/e 192 (19.5), 175 (50.0), 162 (19.5), 163 (100.0), 146 (29.0), 135 (24.3), 105 (11.5), 77 (20.5). The compound was thus shown to be 3-ethyl-7-hydroxyphthalalde (1). This is its first isolation from a plant source and is significant from the biogenetic point of view since all phthalalides, so far isolated from plants, have the same skeleton or a modification thereof.
ENT-16-KAUREN-19-OL FROM COFFEE

INGER WAHLBERG and CURT R. ENZELL
Swedish Tobacco Company, P.O. Box 17007, S-10462 Stockholm, Sweden
and
JOHN W. ROWE
Forest Products Laboratory, Forest Service, U.S. Department of Agriculture, Madison, Wisconsin 53705, U.S.A.

(Received 7 February 1975)

Key Word Index—Coffee arabica; Rubiaceae; CMR spectrum; diterpenoid; ent-16-kauren-19-ol.

On examination of the sterols of coffee beans (Coffeea arabica L.) a small amount of a diterpene alcohol in the form of its acetate was encountered [1]. Its structure was tentatively suggested as being 15-abieten-13β,19-diyil diacetate. However, its CMR spectrum was not in harmony with the proposed structure. Thus, the compound proved to contain 22 carbon atoms, two of which constituted an acetoxy group (singlet at 171.4 ppm and quartet at 21.0 ppm) attached to a methylene group (triplet at 67.2 ppm). Furthermore, the presence in the CMR spectrum of resonances due to two additional methyl groups (quartets at 27.6 and 18.1 ppm), an exocyclic methylene group (singlet at 155.8 ppm, triplet at 103.0 ppm) and three tetrasubstituted non-oxygenated carbon atoms (singlets at 44.2, 39.2 and 37.1 ppm) implied that the unknown diterpene acetate was 16-kauren-19-yl acetate. This was confirmed by direct comparison with an authentic sample (mmp, [2]D, IR, PMR, CMR and MS).

Ent-16-kauren-19-ol has not been detected in coffee before. From a biogenetic point of view its presence is of interest, since the major diterpenoids of coffee, cafestol [2,3] and kahweol [4], are of the kaurene type. It is also interesting to note that ent-16-kauren-19-ol, previously isolated from a few natural sources, e.g. barley [5] and Abrotanella ninigera [6], is an intermediate in the biosynthesis of the gibberellins [7,8] and shows a gibberellin-like biological activity [9].

Acknowledgements—We are grateful to Professor P. R. Jeffries, University of Western Australia, Australia, for an authentic sample of ent-16-kauren-19-ol.

REFERENCES