Thiamine-quinone adducts. Colorimetric determination of thiamine

N. Gallo and V. De Mola
Istituto di Chimica Generale, Università degli Studi, via Amendola 173, 1-70126 Bari (Italy), 1 March 1976

Summary. 2,3-dichloro-1,4-naphtoquinone reacts with thiamine in the presence of NH₃ to give a 1:2 adduct, for which structure II is proposed on the basis of analytical and spectroscopic (IR) data. Such a reaction is very useful for thiamine quantitative determination.

Continuing our studies on active methylenic compounds, we have investigated the reaction of thiamine (vitamin B₁₂) with quinones in the presence of ammonia. In thiamine, the hydrogen at C-2 of the thiazolium group is easily deprotonated leading to the anion I, which is important for the biological activity of thiamine. For this reason thiamine can be compared with active methylenic compounds and should be expected to react with quinones (the so-called Craven reaction). In fact, it has been observed that thiamine chloride hydrochloride easily reacts with several quinones in presence of ammonium hydroxide giving rise to intensely coloured solutions (table). We have studied the reaction between thiamine and 2,3-dichloro-1,4-naphtoquinone which gives the more sensitive colour reaction for the spectrophotometric determination. From this reaction we have isolated a red product (m.p. 235°C) which contains, by elemental analysis, the 2 components in a molar ratio of 2:1. The molecular adduct does not contain chlorine, proving that the reaction takes place with complete dehalogenation of the quinone; moreover it exhibits properties of quinones. The IR-spectrum (3500-3000 cm⁻¹ range, in Nujol mull) shows that the v(N-H) is lowered by 200 cm⁻¹ with respect to that of the N₂ group in thiamine. This can be explained by hydrogen bonding between NH₃ and the carbonyl groups. The N-H deformation is similarly lowered and 2 bands are present in the 1700-1600 cm⁻¹ range, attributable to v(CO) and assigned respectively to v(CO) (1668 cm⁻¹, 1670 cm⁻¹ in the naphtoquinone alone) and to CO stretching (1650 cm⁻¹) of the carbonyl group hydrogen-bonded to NH₃. In the range 1400-600 cm⁻¹, the spectrum is very similar to that of thiamine except for a band at 732 cm⁻¹ attributable to the δ(CH) of bonded naphtoquinone (709 cm⁻¹ in the pure quinone). A weak band is still present at 690 cm⁻¹ attributable to the v(C-S) (690 cm⁻¹ in thiamine). On the basis of these data, it is possible to ascribe to the molecular adduct the structure II.

The calibration curve for the dosage of thiamine has been obtained at 360 nm by measuring the optical density of mixtures containing known amounts of quinone and ammonia and variable amounts of thiamine chloride hydrochloride. The reference for each measurement contained the same amount of quinone and ammonia as the respective sample to be examined, eliminating the absorbance due to the reaction of the quinone with ammonia. The results obtained showed that the optical densities of the red ammonia solutions are a linear function of the thia-

mine concentration in the range 0.25 · 10⁻⁴ to 3 · 10⁻⁴ mol/l, corresponding to a content of thiamine between 8.4 and 101 μg/ml. Such results suggest that this colour reaction may be used in the spectrophotometric dosage of thiamine, because of the rapidity and simplicity of the procedure with respect to other methods⁴–¹¹. Similar investigations for thiamine pyrophosphate are in progress. Experimental. Visible spectra were recorded using a Rank Precision Uvichem H 1600 S.T. Spectrophotometer; 1-cm stopped fused silica cells were used. Thiamine chloride hydrochloride and 2,3-dichloro-1,4-naphthoquinone (Fluka AG, Buchs, Switzerland) were reagent grade for analysis. Dimethylformamide (DMF) was reagent grade for spectrophotometry.

Preparation of adduct. A DMF solution (5 ml) of 2,3-dichloro-1,4-naphthoquinone (0.45 g; 0.02 mol/l) was added to the solution of 1.35 g (0.04 mol) of thiamine chloride hydrochloride in 10 ml of methanol. This mixture, treated with 2 ml of ammonium hydroxide, (26°Be) immediately assumed a deep red colour. The reaction product begins to separate at room temperature, and within 2 h the precipitation is almost complete. The collected product, washed with ethanol, was crystallized a few times from warm methanol and small red crystals were obtained (m.p. 235°C). UV λmax at 235, 280, 470 nm (ε = 3600, 33000, 3400 respectively). IR-bands at 1660 cm⁻¹ and 1650 cm⁻¹ (vCO); 732 cm⁻¹ (OC-H); 690 cm⁻¹ (PC-S). The presence of the quinone nucleus has been detected as follows: a small amount of the adduct was suspended in methanol and a small quantity of NaBH₄ was added. To the decolourized solution, a few drops of H₂SO₄, 0.1N were added to destroy the excess NaBH₄. The mixture was gently warmed for a few min and then treated with a benzene solution of dehydroindacum: immediately it assumed the intense blue coloration due to indacum⁶. Calibration curve. Solutions of thiamine chloride hydrochloride and of 2,3-dichloro-1,4-naphthoquinone in DMF, both 10⁻³ M were prepared. The DMF solution of thiamine contained also 12% by volume of water to facilitate dissolution. The absorption spectrum of the DMF solution of each component was transparent, in the range 360–500 nm. The ammonia DMF solution of the quinone showed appreciable absorbance. The wave length of 360 nm was selected as the most appropriate for the calibration curve. To this purpose a series of samples was prepared by adding known volumes (in the range 0.25 to 3 ml) of DMF 10⁻³ M thiamine solution to 4 ml of DMF 10⁻³ M 2,3-dichloro-1,4-naphthoquinone solution. Each of these samples was treated with 0.1 ml of ammonium hydroxide (26°Be) and diluted to a constant volume of 10 ml with DMF. The samples were allowed to stand for 5 min before reading the optical densities. The reference sample was made adding 0.1 ml of ammonium hydroxide (26°Be) to 4 ml of DMF 10⁻³ M 2,3-dichloro-1,4-naphthoquinone solution and diluting to 10 ml with DMF. The figure shows the linear correlation between optical density and thiamine concentration in the range 0.25 · 10⁻⁴ to 3 · 10⁻⁴ mol/l, corresponding to a content of thiamine chloride hydrochloride between 8.4 and 101 μg/ml.

Plots of optical density vs. thiamine chloride hydrochloride concentration according to the law of Lambert-Beer.

Clausarin – a novel coumarin from Clausena pentaphylla (Roxb.) DC.

Falak Anwer, A. Shoeb, R. S. Kapil and S. P. Popli

Central Drug Research Institute, Chattar Manzil Palace, P. O. Box 173, Lucknow 226 001 (India), 15 June 1976

Summary. Clausarin (I), a novel coumarin, has been isolated along with methyl linolenate, dentatin, clausenidin, β-sitosterol and heptaphylline from the roots of Clausena pentaphylla. Based on spectroscopic evidence, its structure has been established as 3,10-bis(1,1-dimethylallyl)-8,8-dimethyl-5-hydroxy-2H,8H-benzo (1,2-b; 5,4-b') dipyran-2-one. The ethanolic extract of the roots of Clausena pentaphylla (Roxb.) DC. (Rutaceae) on fractionation and column chromatography over neutral alumina afforded 6 compounds. Of these, 5 were characterized as methyl linolenate (GLC), dentatin, clausenidin, β-sitosterol and heptaphylline. The sixth one, obtained as a minor constituent is a new coumarin and has been named as clausarin. The present communication is concerned with the elucidation of its structure as 3,10-bis(1,1-dimethylallyl)-8,8-dimethyl-5-hydroxy-2H,8H-benzo (1,2-b; 5,4-b') dipyran-2-one (I).

Clausarin, C₄₀H₆₆O₄, M⁺ 380, m.p. 208°C (d) showed absorption at pCHmax 3220 (OH), 1670 (C=O), 1610 and 1590 cm⁻¹ (unsaturation); 1CH₃OH 232 (log ε 3.33), 282 (3.44) and 338 nm (3.21) respectively similar to nardentatin. Addi-