Induction of Fertile Male Flowers in Genetically Female Cannabis sativa Plants by Silver Nitrate and Silver Thiosulphate Anionic Complex

H. Y. Mohan Ram and R. Sett
Department of Botany, University of Delhi, Delhi (India)

Summary. Apical application of silver nitrate (AgNO₃; 50 and 100 µg per plant) and silver thiosulphate anionic complex (Ag(S₂O₃)₂⁻; STS; 25, 50 and 100 µg per plant) to female plants of Cannabis sativa induced the formation of reduced male, intersexual and fully altered male flowers on the newly formed primary lateral branches (PLBs); 10 µg per plant of AgNO₃ was ineffective and 150 µg treatment proved inhibitory. A maximum number of fully altered male flowers were formed in response to 100 µg STS. The induced male flowers produced pollen grains that germinated on stigmas and effected seed set. Silver ion applied as STS was more effective than AgNO₃ in inducing flowers of altered sex. The induction of male flowers on female plants demonstrated in this work is useful for producing seeds that give rise to only female plants. This technique is also useful for maintaining gynoecious lines.

Key words: Cannabis sativa – Sex expression – Silver nitrate – Silver thiosulphate anionic complex

Introduction

Sex expression in flowering plants is regulated by genetic, environmental and hormonal factors. There is evidence that specific endogenous hormones play an important role in maintaining the genetic sex, and that sex can be modified through exogenous growth regulators, especially in the sexually polymorphic systems (Heslop-Harrison 1964). In general gibberellins favour male sex expression and auxin, ethylene and cytokinins promote female sex expression in various monoecious and dioecious systems (Mohan Ram 1980). Treatments which reduce the ethylene level in the tissues (hypobaric conditions, treatment with benzothiadiazole) or antagonize the action of ethylene (CO₂) cause the formation of male or bisexual flowers in place of female ones (Byers et al. 1972).

Recently silver ion has been shown to interfere with ethylene action, presumably at the ethylene receptor sites (Beyer 1976a). Following the report by Beyer (1976b) that the application of silver nitrate (AgNO₃) initiates male flower formation in gynoecious cucumber, it has been recently shown in four cucumber lines that silver ion is superior to GA₃ for male flower induction (Kalloo 1978; Tolla and Peterson 1979). In the pistillate 240 line of Ricinus communis (Ankineedu and Rao 1973) an internodal injection of aqueous silver nitrate solution induced fertile male flowers on the strictly pistillate primary terminal raceme (Mohan Ram and Sett 1980). Using labelled silver (¹¹⁰ Ag), Veen and van de Geijn (1978) showed that silver applied as silver thiosulphate anionic complex (STS) is transported faster (²⁴ h⁻¹) than AgNO₃ (³ cm day⁻¹) and that it completely counteracts the ethylene effect and significantly extends the vase-life of carnations (Veen 1979).

A preliminary report from this laboratory showed that apical application of silver nitrate (100 µg/plant) induces fertile male flowers in female Cannabis plants (Sarath and Mohan Ram 1979). The present investigation was undertaken with the objective of establishing the minimal and optimal dosage of AgNO₃ required to modify the sex expression of female plants of Cannabis sativa and also to find out whether STS acts as an ethylene antagonist in male sex induction.

Material and Methods

Seedlings of Cannabis sativa growing naturally in the Botanical Garden of the Department were transplanted at the 3- or 4-leaf stage to 25 cm wide earthenware pots filled with garden soil, in November, 1980. The sex of the plants was determined after flower initiation. Only female plants were selected for study. These plants have a pair of sessile female flowers at the
tested either by immersing the pollen in 2,3,5-triphenyl 2 H-
A 10 vtl drop of the test compound was applied each day for
0.01 ml pipette. Tween-80 (0.01%) was used as the surfactant.

Either an aqueous solution of AgNO₃ or of silver thiosul-
phate anionic complex [Ag(S₂O₃)²⁻]; (STS); 1 silver nitrate
(AgNO₃); 8 sodium thiosulphate (Na₂S₂O₃) w/w was applied
to the growing shoot tip of the female plants with the help of a
0.01 ml pipette. Tween-80 (0.01%) was used as the surfactant.
A 10 µl drop of the test compound was applied each day for
5 days to make up the total amount. Ten plants were main-
tained for each treatment. The plants had received 50, 100,
150 µg/plant of AgNO₃ or 25, 50, 100 µg/plant of STS each,
by the end of the fifth day. The control plants received the
surfactant solution only. The viability of the pollen grains
was tested either by immersing the pollen in 2,3,5-triphenyl 2 H-
tetrazolium chloride (TTC; Nutritional Biochemical Corpo-
rations, Cleveland, Ohio, USA) for 3 to 5 min or by germinating
the freshly collected pollen from the induced male flowers in a
medium consisting of 7% sucrose and 1% agar.

Results

In response to the 50 and 100 µg treatments, the young
leaves covering the shoot apex turned black (after the
final treatment), giving a burnt appearance. Apical
growth was suspended and the shoot tip resumed its
activity 20–25 days after the final treatment. The
increment in height as ascertained 48 days after treat-
ment, showed no marked difference from that of the
controls (Table 1). The number of nodes was signifi-
cantly higher in the treated plants (Table 1). On ac-
count of a temporary cessation of growth of the shoot
meristem in the above two treatments, apical domi-

cance was released and the primary lateral branches
(PLBs) elongated, surpassing the length of those present
in the control plants (Fig. 1 a). These branches bore
flowers of the following sex types: (i) female (♂); (ii)
intersexual (♀); flowers bearing both female and male
organs (Fig. 1 d); (iii) reduced male (R♂; flowers having
four or fewer stamens, Fig. 1 e) and (iv) male (♂;
bearing 5 stamens with a copious amount of pollen
grains, Fig. 1 f). Figure 1 g shows an excised PLB from
the 100 µg treatment, in which induced male flowers
are seen. A minimum of eight newly formed PLBs
bearing flowers of altered sex were present in all
treated plants. Data collected from these have been
presented in Table 1. There was a distinct change in the
sex of the flowers appearing on the main axis after
treatment but in view of the larger number of flowers
formed on the PLBs, data were collected only from
these. The total number of flowers formed on each PLB
was higher in the treated plants than in the controls.

This was because of the greater lengths of the PLBs on
the treated plants and also because of higher flower
number per node (as compared to the restricted num-
ber of female flowers at each node on the control
plants). Surprisingly, with both the treatments an in-
crease in the percentage of flowers bearing an altered
sex (out of the total number of flowers) was noticed
from position 1 to 8 of the PLBs (from base upwards),
(Table 1).

The shoot tip became black, dried up completely
and failed to revive in response to the highest amount
of AgNO₃ applied (150 µg per plant). The little incre-
ment in height that occurred was due to internodal
elongation (Table 1). The young leaves already present
became yellow and abscised without further expansion.
The suppressed primary lateral branches arising at the
lower nodes of the main axis became highly stimulated
and caused the plants to become bushy. Surprisingly,
these branches bore only a few abortive female flowers.

In another experiment it was found that 10 µg
AgNO₃ was ineffective in modifying sex expression and
25 µg treatment caused only the first three newly
formed PLBs (from base upwards) to bear a maximum
number of flowers of altered sex along with normal
female flowers. However, the percentage of flowers
bearing altered sex along each PLB in plants treated
with 25 µg was lower than that formed in 50 µg treat-
ment.

Three amounts of STS, namely 25, 50 and 100 µg
per plant, were selected on the basis of previous ex-
perience with AgNO₃. The shoot tips of the treated
plants became black and appeared dry in response to
all the three dosages of STS. The young leaves present
at the time of treatment became decolourised and their
shapes changed drastically at maturity. The average leaf
area in control, 25, 50 and 100 µg treatments were
30.12, 14.46, 9.64 and 6.02 cm² respectively. The shoot
tip resumed its growth 20–25 days after treatment with
25 and 50 µg STS, whereas when treated with 100 µg, it
failed to recover. The newly formed leaves in the
former two treatments were also small and deformed.
Treatment with 25 µg of STS caused only a marginal
stimulation in height, although the node number was
nearly doubled (Table 2). In plants that were given
50 µg of the compound, the height was significantly
lower than that of the control, although the node
number remained unchanged. In response to 100 µg of
STS, the shoot tip ceased to grow further and the small
increment in height resulted entirely from internodal
elongation (Table 2). It may be inferred that cell
elongation was more drastically affected than cell
division in response to 25 and 50 µg per plant. In these
treatments the upper nodes produced PLBs with
flowers of altered sex (Table 2). Data presented in
Table 2 pertain to the first eight PLBs formed after
treatment, since a maximum number of flowers bearing
altered sex were present on them. Although the length
Fig. 1a-g. Cannabis sativa: a Terminal portion of a control female plant × 0.6; inset shows an enlarged female flower, note the prominent, unequal stigmas (st) projecting out of the bract (br), × 2; b Excised PLB from a plant treated with 100 μg AgNO₃. Note the female flowers (ff) at the lower nodes and male flowers (mf) at the upper nodes, × 2; c Apical portion of a 100 μg STS-treated plant. Arrow indicates the dried shoot tip. Male flowers (mf) are seen in clusters on the PLBs, × 1; d An intersexual flower showing an anther bearing a stigma (st) and the hairy bract (br) enclosing the female flower, × 5; e Reduced male flower with three stamens (sta) projecting beyond the bract, typical of a female flower, × 5; f A fully altered male flower showing five tepals (tp) and five stamens (sta). The bract has been eliminated, × 7; g Germinating pollen grains obtained from male flowers induced by AgNO₃ (100 μg) treatment (2 h after incubating in agar-sucrose medium), × 166.
Table 1. Effect of AgNO$_3$ on shoot growth, length of primary lateral branches and flower sex expression

<table>
<thead>
<tr>
<th>Treatments (µg/plant)</th>
<th>0 (control)</th>
<th>50</th>
<th>50</th>
<th>50</th>
<th>50</th>
<th>50</th>
<th>50</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increment in height (cm)</td>
<td>34.9 CI 7.6</td>
<td>33.9 CI 6.45 NS</td>
<td>7.0</td>
<td>0.45</td>
<td>11.11</td>
<td>2.14**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increment in the number of nodes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Effect of Ag(S$_2$O$_3$)$_2$ on shoot growth, length of primary lateral branches and flower sex expression

<table>
<thead>
<tr>
<th>Treatments (µg/plant)</th>
<th>0 (control)</th>
<th>25</th>
<th>25</th>
<th>25</th>
<th>25</th>
<th>25</th>
<th>25</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increment in height (cm)</td>
<td>34.9 CI 7.6</td>
<td>36.1 CI 7.19 NS</td>
<td>7.0</td>
<td>0.45</td>
<td>13.0</td>
<td>1.84**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increment in the number of nodes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Average of 10 plants, 48 days after treatment; *Numbers indicate position from base upwards; *Percentage of flowers bearing altered sex out of the total number of flowers; *Length < 1 cm; *Dried shoot tip; **Highly significant over control at P < 0.01; NS = Not significant; CI = Confidence interval at P < 0.05

Footnotes see Table 1
Table 1. (continued)

<table>
<thead>
<tr>
<th>Length (cm)</th>
<th>Flower number</th>
<th>Percentage of altered flowers</th>
<th>Floriferous branches absent</th>
</tr>
</thead>
<tbody>
<tr>
<td>x CI</td>
<td>q d</td>
<td>R d</td>
<td>d</td>
</tr>
<tr>
<td>8.00 1.01</td>
<td>3.9 3.0 5.0 7.0</td>
<td>51.90</td>
<td></td>
</tr>
<tr>
<td>7.10 4.44</td>
<td>2.1 2.0 2.5 8.0</td>
<td>50.80</td>
<td></td>
</tr>
<tr>
<td>6.90 2.12</td>
<td>9.5 3.6 4.5 7.2</td>
<td>61.69</td>
<td></td>
</tr>
<tr>
<td>4.90 2.69</td>
<td>8.5 1.0 2.0 4.6</td>
<td>47.20</td>
<td></td>
</tr>
<tr>
<td>3.40 1.66</td>
<td>7.2 2.8 3.2 6.1</td>
<td>62.69</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.4 1.8 3.0 7.6</td>
<td>73.81</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.9 1.8 3.5 6.8</td>
<td>75.62</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.8 1.6 2.5 6.3</td>
<td>85.25</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. (continued)

<table>
<thead>
<tr>
<th>Length (cm)</th>
<th>Flower number</th>
<th>Percentage of altered flowers</th>
<th>Floriferous branches absent</th>
</tr>
</thead>
<tbody>
<tr>
<td>x CI</td>
<td>q d</td>
<td>R d</td>
<td>d</td>
</tr>
<tr>
<td>5.88 2.42</td>
<td>4.8 2.0 1.0 6.0</td>
<td>65.22</td>
<td></td>
</tr>
<tr>
<td>3.13 1.29</td>
<td>3.2 1.0 4.3 6.8</td>
<td>79.08</td>
<td></td>
</tr>
<tr>
<td>2.88 2.09</td>
<td>2.4 2.0 2.0 7.3</td>
<td>82.48</td>
<td></td>
</tr>
<tr>
<td>3.25 1.93</td>
<td>2.2 1.3 2.0 3.3</td>
<td>75.00</td>
<td></td>
</tr>
<tr>
<td>1.63 0.62</td>
<td>1.7 2.0 1.0 5.2</td>
<td>82.83</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.0 1.0 2.0 5.6</td>
<td>81.83</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.0 1.0 2.0 6.0</td>
<td>81.82</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.0 2.0 1.0 6.0</td>
<td>81.82</td>
<td></td>
</tr>
</tbody>
</table>
of these branches was not significantly different from that in the controls, the total number of flowers per branch in the treated plants was higher, resulting in an aggregation of flowers at the nodes. In the treatment with 50 μg, the number of female flowers formed on each PLB was less and the percentage of altered flowers was more than that formed in response to 25 μg. In plants receiving 100 μg, the first three nodes (which had no PLBs at the time of treatment) put out highly elongated PLBs which bore a large number of flowers of altered sex along with some female flowers (Table 2). Interestingly, the number of fully altered male flowers was significantly greater than that of the reduced males, intersexual and female flowers. Also, in each branch the number of altered flowers was higher in the upper nodes, resulting in the clustering of male flowers towards the apex. The percentage of altered flowers out of the total number of flowers present on each branch was much higher in the 100 μg (Fig. 1 c) treatment than that in the 25 and 50 μg treatments.

Irrespective of the extent of masculinization (whether male, reduced male or intersexual condition) caused by treatment with either AgNO₃ or STS, the anthers in the flowers of altered sex contained a large quantity of viable pollen grains as ascertained by the tetrazolium test. The viable pollen grains also germinated within half an hour of incubation in agar-sucrose medium (Fig. 1 g). To test the ability of pollen for germination and for effecting seed set, the stigmas of unpollinated female flowers were pollinated with the pollen from induced male flowers and bagged. The handpollinated female flowers developed seeded fruits, whereas those left unpollinated and bagged failed to do so and abscised. Thus pollen from induced male flowers were capable of inducing seed set. On the basis of our previous experiments (Jaiswal 1972) we presume that the progeny of these seeds would be 100% pistillate, although in this particular experiment the sex of the plants has not been scored.

Discussion

The present investigation has substantiated the earlier work done in this laboratory by Sarath and Mohan Ram (1979) and has established that apical application of AgNO₃ to the female plants of Cannabis stimulates the development of male flowers. Additionally, the experiments have shown that 50 and 100 μg amounts of AgNO₃ are most effective in inducing fertile male flowers at the newly formed nodes on the main axis and also on the freshly formed PLBs. Treatment with 10 μg proved ineffective whereas application of 150 μg strongly inhibited the growth of the apical and lateral meristems.

Silver ion applied as AgNO₃ was shown by Beyer (1976 a) to block the action of the exogenously applied ethylene. He demonstrated this phenomenon in the classical ‘triple’ response (which included growth retardation, stem swelling and horizontal growth) in intact etiolated peas; in leaf, flower and fruit abscission in cotton, and in the senescence of Cattleya. In a gynoecious cucumber plant, AgNO₃ effectively shifted the sex expression from female to male (Beyer 1976 b). Intersexual and staminate flowers were induced by AgNO₃ treatment in other gynoecious cucumber lines by Kalloo (1978), Atsmon and Tabbak (1979) and Tolla and Peterson (1979). Curiously in a monoecious cucumber, AgNO₃ nullified the effect of mechanical stress and induced pistillate flower production (Takahashi and Suge 1980).

The present work has also shown that STS is more effective than AgNO₃ in inducing male flowers on female plants. The number of male flowers induced per plant and the percentage of flowers of altered sex along each PLB were higher in STS treatment. STS counteracted the ethylene effect in carnations and extended their vase-life significantly (Veen 1979). In the same plant, a 10-minute pulse treatment with STS (0.1 mM Ag) doubled the vase-life of the flowers (Reid et al. 1980). Dimalla and Van Staden (1980) have also demonstrated that the shelf-life of carnations can be dramatically increased by immersing the cut end in STS for 10 min. The present study has indicated that application of silver in the anionic complex is more effective than that in the cationic form. Additionally the present investigation has clearly demonstrated that STS also triggers male sex expression in female plants of Cannabis sativa probably by blocking the action of ethylene. Chemical induction of male flowers is thus a means of producing guaranteed female plants or of maintaining gynoecious lines through the production of seeds following selfing in female plants. If properly exploited, this technique should be highly rewarding in crop improvement programmes.

Literature

Jaiswal, V.S. (1972): Effect of some growth regulators on extension growth and sex expression of Cannabis sativa L. Ph. D. Thesis submitted to the University of Delhi, Delhi, India

Received November 15, 1981
Accepted February 1, 1982
Communicated by D. von Wettstein

Prof. Dr. H. Y. Mohan Ram
Dr. R. Sett
Department of Botany
University of Delhi
Delhi-110007 (India)