Emission of N\textsubscript{2}O, N\textsubscript{2} and CO\textsubscript{2} from soil fertilized with nitrate: effect of compaction, soil moisture and rewetting

R. Rusera,*, H. Flessab, R. Russowc, G. Schmidtc, F. Bueggera, J.C. Muncha

aGSF-Institute of Soil Ecology, Neuherberg, P.O. Box 1129, D-85758 Oberschleißheim, Germany
bUniversity of Göttingen, Institute of Soil Science and Forest Nutrition, Büsgenweg 2, D-37077 Göttingen, Germany
cUFZ Centre for Environmental Research Leipzig-Halle, Department of Soil Science, Theodor-Lieser-Str.4, D-06120 Halle, Germany

Received 10 December 2004; received in revised form 2 May 2005; accepted 9 May 2005

Abstract

Soil compaction and soil moisture are important factors influencing denitrification and N\textsubscript{2}O emission from fertilized soils. We analyzed the combined effects of these factors on the emission of N\textsubscript{2}O, N\textsubscript{2} and CO\textsubscript{2} from undisturbed soil cores fertilized with15N\textsubscript{O\textsubscript{3}} (150 kg N ha-1) in a laboratory experiment. The soil cores were collected from differently compacted areas in a potato field, i.e. the ridges (\rho\textsubscript{D} = 1.03 g cm-3), the interrow area (\rho\textsubscript{D} = 1.24 g cm-3), and the tractor compacted interrow area (\rho\textsubscript{D} = 1.64 g cm-3), and adjusted to constant soil moisture levels between 40 and 98\% water-filled pore space (WFPS).

High N\textsubscript{2}O emissions were a result of denitrification and occurred at a WFPS \geq 70\% in all compaction treatments. N\textsubscript{2} production occurred only at the highest soil moisture level (\geq 90\% WFPS) but it was considerably smaller than the N\textsubscript{2}O–N emission in most cases. There was no soil moisture effect on CO\textsubscript{2} emission from the differently compacted soils with the exception of the highest soil moisture level (98\% WFPS) of the tractor-compacted soil in which soil respiration was significantly reduced. The maximum N\textsubscript{2}O emission rates from all treatments occurred after rewetting of dry soil. This rewetting effect increased with the amount of water added. The results show the importance of increased carbon availability and associated respiratory O\textsubscript{2} consumption induced by soil drying and rewetting for the emissions of N\textsubscript{2}O.

Keywords: N\textsubscript{2}O; 15N; N\textsubscript{2}; Denitrification; Soil respiration; Soil moisture; Bulk density; N fertilizer; Rewetting

1. Introduction

Nitrous oxide (N\textsubscript{2}O) is a climate relevant trace gas; its contribution to the anthropogenic greenhouse effect has been estimated to 6\% (IPCC, 1996). Additionally, it has been shown that N\textsubscript{2}O reacts with oxygen radicals in the stratosphere to form nitrogen monoxide, which is involved in the depletion of stratospheric ozone (Crutzen, 1981). Duxbury et al. (1993) and Isermann (1994) estimated that approximately 75\% of the global, anthropogenic N\textsubscript{2}O emissions derive from agricultural activities. The primary reason for enhanced N\textsubscript{2}O emissions from agricultural soils is increased N inputs by mineral fertilizers, symbiotic N\textsubscript{2} fixation, and animal waste application. Nitrous oxide is produced in soils as an intermediate during nitrification and denitrification (Sahrawat and Keeney, 1986; Granli and Bøckman, 1994; Brenner, 1997). Labeling of mineral N pools with 15N enriched nitrogen and measuring the 15N abundance in the emitted N\textsubscript{2}O was shown to be a useful tool to determine the contribution of nitrification and denitrification to N\textsubscript{2}O emissions from soils (Stevens et al., 1997).

According to a model of Davidson (1991), N\textsubscript{2}O is primarily derived from nitrification at low and moderate soil moistures with denitrification becoming more important at soil moisture contents greater than 60\% water-filled pore space (WFPS) due to a decreased O\textsubscript{2} supply. Soil moisture, soil respiration, soil aggregation, and soil compaction are key factors determining the aeration of soils and the formation of anoxic microsites (Granli and Bøckman, 1994), and these factors may interact and amplify each other in their effect on N\textsubscript{2}O emission.

In experiments on potato fields, we observed a significant influence of soil compaction on N\textsubscript{2}O fluxes. Soil compaction by tractor traffic strongly increased N\textsubscript{2}O emissions;
whereas soil loosening decreased N$_2$O fluxes (Ruser et al., 1998; Flessa et al., 2001). We ascribed these results to a change of the macro-pore volume resulting in a restricted or improved availability of O$_2$ in the soil. However, how soil compaction and soil moisture interact in their effect on N$_2$O emission remained uncertain, and the extent to which the measured emission rates were influenced by the reduction of N$_2$O to N$_2$ was not clear. Additionally, we measured high N$_2$O and CO$_2$ in situ fluxes after rewetting of dry soil in midsummer (Ruser et al., 2001). These rewetting emissions did not fit a simple linear correlation model between the gas flux rates and the percentage of water-filled pore space. To obtain more detailed information on how soil compaction, soil moisture and soil rewetting control the production and emission of N$_2$O, we conducted an incubation study with undisturbed, 15N-fertilized soil cores taken from differently compacted areas (ridge, interrow, tractor-compact ed interrow) in a potato field.

The objectives of this study were (i) to determine the effect of different bulk density and soil moisture, the latter including drying and rewetting of the undisturbed soil cores, on the emission of N$_2$O, N$_2$ and CO$_2$ after addition of nitrate fertilizer, and (ii) to determine the contribution of nitrification and denitrification to the N$_2$O emission.

2. Materials and methods

2.1. Study site

Soil cores were sampled at the Research Station of the FAM Research Network on Agroecosystems in Scheyern, approximately 40 km north of Munich in southern Germany (N 48° 30.0', E 11° 20.7'). The experimental farm is located in a hilly landscape derived from tertiary sediments partially covered by loess. The mean annual air temperature is 7.4 °C, and the mean annual precipitation is 833 mm. Soil cores were taken from a potato plot (125 m2) of a crop-rotation trial in October before harvest. The potatoes (Solanum tuberosum L., var. Calla) were planted on May 9th, fertilized with 150 kg N ha$^{-1}$, K2 M CaCl$_2$) on June 10th, and harvested on October 24th. The soil type at the investigated site was a fine-loamy Dystric Eutrochrept. The topsoil had an initial pH value (10$^{-2}$ M CaCl$_2$) of 6.1 and consisted of 23% clay, 55% silt and 22% sand.

![Image](image.png)

The bulk density, C$_{org}$ and N$_i$ contents of the three investigated areas (ridge, uncompacted interrow, tractor-compact ed interrow) are shown in Table 1. Since the beginning of the FAM project in 1992, conventional farming with shallow tillage has been applied to reduce soil erosion in this undulating landscape. This practice resulted in an accumulation of organic carbon in the upper centimeters of the soil. Due to the ridge cultivation of potatoes, hilling up of this C enriched top soil, resulted in slightly higher C$_{org}$ and N$_i$ contents in the ridge area than in the uncompacted and the compacted interrow areas (Table 1).

2.2. Soil sampling and experimental design

One week prior to the potato harvest, undisturbed soil cores were sampled using stainless steel cylinders of 5 cm in height and an inner diameter of 8.1 cm. In total 60 soil cores were taken from each of the following areas at a soil depth of 0–5 cm: the ridge soil, the uncompacted interrow soil, and the tractor-compact ed interrow soil. At the beginning of the incubation experiment, twelve soil cores from each area were used to determine soil bulk density after drying at 106 °C. Based on the mean bulk density of each sampled area we calculated the total pore space assuming a particle density of 2.65 g cm$^{-3}$. This information was used to adjust moisture content of the incubated soil cores to a specific water-filled pore space. The remaining 48 soil cores from each area were used for the incubation experiment. Gas fluxes (CO$_2$, N$_2$O, N$_2$) were measured from 16 soil cores per area (four moisture levels with n = 4) and the remaining 32 cores were used to determine soil nitrate concentration and 15N abundance in soil nitrate. The soil cores were air-dried and then they were put on glass plates and sealed at the bottom. At the end of the incubation experiment, bulk density, organic carbon concentration (C$_{org}$) and total nitrogen content (N$_i$) of all soil cores were determined (n = 48).

During the cropping period prior to the soil core sampling, the in situ-measured soil moisture ranged between 35.1 and 70.3% water-filled pore space (WFPS) in the ridge soil and in the uncompacted interrow soil and between 70.2 and 112.2% WFPS in the tractor-compact ed interrow soil. This cropping season included heavy precipitation events as well as two periods of severe

<table>
<thead>
<tr>
<th>Area</th>
<th>Bulk density g cm$^{-3}$</th>
<th>SD</th>
<th>C$_{org}$ %</th>
<th>SD</th>
<th>N$_i$ %</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ridge soil</td>
<td>1.02a</td>
<td>(0.05)</td>
<td>1.63b</td>
<td>(0.16)</td>
<td>0.187b</td>
<td>(0.014)</td>
</tr>
<tr>
<td>Uncompacted interrow soil</td>
<td>1.24b</td>
<td>(0.08)</td>
<td>1.43a</td>
<td>(0.09)</td>
<td>0.173a</td>
<td>(0.007)</td>
</tr>
<tr>
<td>Compacted interrow soil</td>
<td>1.65a</td>
<td>(0.07)</td>
<td>1.48a</td>
<td>(0.07)</td>
<td>0.174a</td>
<td>(0.010)</td>
</tr>
</tbody>
</table>

Soil cores were taken from the soil depth 0–5 cm. Standard deviation (SD) is given in brackets. Statistical significant differences are indicated by different letters (Student-Newman-Keuls-Test, $\alpha < 0.05$).
drought (Ruser et al., 1998). Based on these field observations, we used the following soil moisture levels in our incubation experiment: 40, 60, 70 and 90% WFPS for the soil cores from the ridge soil and uncompacted interrow soil; 60, 70, 90 and 98% WFPS for soil cores from tractor-compacted interrow soil.

The soil cores were adjusted to a specific WFPS by adding 10^{-2} M CaCl$_2$ solution. Then, the soil cores were preconditioned at 14 °C for 3 weeks. Water loss was periodically checked and readjusted to the initial soil moisture content as required. After pre-incubation, the soil cores were fertilized (day 0) by broadcast application of KNO$_3$ solution (39 at.% 15N). Fertilizer addition was carried out by evenly applying the fertilizer solution onto the surface of the cores using a pipette. The total amount of fertilizer solution applied was 3 ml, corresponding to a maximum increase of the WFPS of 3.1%. The N application rate was 77.3 mg N per soil core or 150 kg N ha$^{-1}$ and corresponded to good agricultural practice for the fertilization of potatoes in this region.

2.3. Automated N$_2$O and CO$_2$ flux measurements

The single cores were placed in microcosms (7 cm height, 14.4 cm inner diameter) to determine the dynamics of N$_2$O and CO$_2$ emission. A total of 12 soil cores were used per treatment: Four cores were used for the determination of trace gas fluxes, the remaining eight cores were used for the analysis of soil nitrate contents and of 15N abundance in soil nitrate.

As described in detail by Hantschel et al. (1994), the microcosm cylinders were sealed gas tight at the bottom and at the top with a PVC plate. The top plates of the microcosms had two openings, one of which was used as fresh air inlet and the second was used as gas outlet and connected to a gas chromatograph equipped with a 63Ni electron capture detector (ECD). N$_2$O and CO$_2$ gas fluxes were calculated using the difference of gas concentrations of the outlet air and the fresh air input taking into account the constant gas flow (20 ml min$^{-1}$) through the microcosm headspace. N$_2$O and CO$_2$ fluxes were measured at least three times per day and microcosm. A detailed description of the microcosm system and the configuration of the gas chromatograph was given in Flessa and Beebe (1995) and in Loffield et al. (1997). N$_2$O and CO$_2$ emission rates from the soil cores were monitored for 42 days, then the cores were dried at 30 °C for 2 weeks (day 43 to 55). On day 56 after fertilization, the cores were rewetted to the initial soil water content and N$_2$O and CO$_2$ fluxes were monitored for an additional 16 days.

2.4. 15N and soil analysis

2.4.1. $[^{15}\text{N}]$ N$_2$O and $[^{15}\text{N}]$ N$_2$ analysis

In order to determine the N$_2$ emission and the N source of the emitted N$_2$O, we took air samples from the outlet of the microcosms by flushing exchangers (12 ml, Europe Scientific) for 2 h. The measurements of $[^{15}\text{N}]$ N$_2$O and $[^{15}\text{N}]$ N$_2$ were carried out for all moisture treatments and for all replicates on day 3 and day 60 and additionally on day 40 for two of the four moisture regimes (ridge soil: 40 and 60%; uncompacted interrow soil: 40 and 90%; tractor-compacted interrow soil: 60 and 98% WFPS on day 40). To obtain a higher temporal resolution of $[^{15}\text{N}]$ N$_2$O emission, additional air samples were collected from single soil cores per treatment on day 1, 8, 25 and 40. The 15N abundance in the N$_2$O and N$_2$ was measured using gas chromatography-isotope ratio mass spectrometry as described in detail by Schmidt et al. (1997). The 15N abundance of N$_2$O and N$_2$ in the ambient air was determined for the outlet air and for the fresh air input. The 15N abundance of the N$_2$O emitted was then calculated using the following mixing ratio equation:

$$^{15}\text{N}_2\text{O emitted} = ((c_{\text{Mix}}^{^{15}\text{N}}) - (c_{\text{FA}}^{^{15}\text{N}}))(c_{\text{Mix}}^{^{15}\text{N}} - c_{\text{FA}}^{^{15}\text{N}})^{-1}$$

(1)

where $^{15}\text{N}_2\text{O emitted} =$ 15N abundance of the N$_2$O emission [atom%]; $c_{\text{Mix}}^{^{15}\text{N}}$ = N$_2$O concentration of the outlet air [ppbvol], $c_{\text{FA}}^{^{15}\text{N}}$ = N$_2$O concentration of the fresh air input [ppbvol]. $^{15}\text{N}_{\text{Mix}}$ = relative 15N abundance of the N$_2$O in the outlet air [atom%], and $^{15}\text{N}_{\text{FA}}$ = relative 15N abundance of the N$_2$O in the fresh air input [atom%].

The N$_2$ emission was calculated using the following equation:

$$\text{flux } N_2-D = \text{flow } 0.7808 M \times TV_m T_0 d 60A^{-1} 10^3$$

(2)

$$\text{flux } N_2-D = \text{flux rate of } N_2 \text{ from denitrification } [\mu \text{ g } N_2 \text{ m}^{-2} \text{ h}^{-1}], \text{flow } = \text{air flow rate through the microcosm headspace } [\text{ml min}^{-1}], 0.7808 = \text{assumed } N_2 \text{ concentration in fresh air input } (\text{decimal}), M_W = \text{molar mass of } N_2 (28 \text{ g mol}^{-1}), T = \text{experimental temperature } (287.15 \text{ K}), V_m = \text{molar volume } (22.411 \text{ mol}^{-1}), T_0 = 273.15 \text{ K}, d = \text{mixing coefficient of atmospheric } N_2 \text{ with } N_2 \text{ from denitrification, and } A = \text{soil core surface area } [\text{cm}^2].$$

The mixing coefficient d was calculated from the ratios $^{36}N_2/^{28}N_2$ and $^{36}N_2/^{29}N_2$ of the samples assuming a non-random distribution of 15N (Schmidt et al., 1997). Russow et al. (1996) extensively described the steps used here to calculate the mixing coefficient d.

Russow et al. (1996) quantified N$_2$ evolved from an 15N labeled soil nitrate pool with a similar analytical equipment and determined a detection limit of 16 g N$_2$–N ha$^{-1}$ d$^{-1}$ for a static chamber system and a 15N enrichment of 40 at.% in the nitrate pool. In contrast to these calculations we used a system where the headspace of the microcosms was constantly flushed with fresh air. Consequently, the detection limit in our study was about three times higher than the detection limit determined by Russow et al. (1996) and it corresponded to a N$_2$ emission rate of 180 μg N$_2$–N m$^{-2}$ h$^{-1}$ (43 g N$_2$–N ha$^{-1}$ d$^{-1}$).
2.4.2. Soil and soil extracts analysis
At the end of the incubation, soil bulk density was determined from each core after drying of approximately 50 g fresh soil at 106 °C. Soil extracts were sampled on day-1, 3 and 72 by shaking 100 g fresh soil with 200 ml of 10⁻² M CaCl₂ solution for 1 h. The suspension was passed through a 0.45 μm polycarbonate filter. Soil nitrate content in the solution was determined using a continuous flow analyzer (SA 20/40 Skalar Analytical, Erkenelenz, Germany). Total C and N content of an aliquot of air-dried soil from day-1, 3 and 72 was determined using a CN analyzer (NA 1500, Carlo Erba). To quantify the ¹⁵N abundance of the soil N, this CN analyzer was coupled to a mass spectrometer Delta E (Finnigan MAT, Bremen, Germany) for samples <1.5 at.% ¹⁵N. Samples with ¹⁵N enrichments >1.5 at.% were measured using an emission spectrometer (NOI-6PC, FAN, Germany), which was also coupled to a CN analyzer NA 1500.

The ¹⁵N abundance in soil nitrate was determined on day-1, 3, and 72 using the diffusion method described by Jensen (1991). The ¹⁵N abundance was measured by the coupling of the CN analyzer with the emission spectrometer (NOI-6PC, FAN, Germany). Due to the low NH₄⁺ concentrations in the soil extracts (<15 ng N 200 ml⁻¹ extract) a reliable determination of the ¹⁵N abundance in soil ammonium was not possible. The ¹⁵N abundance of the total soil N before nitrate addition was 0.366 at.%. We assumed the same ¹⁵N abundance for the ammonium pool during the first 10 days after nitrate addition.

3. Results
3.1. Emission of N₂O, N₂ and CO₂ and nitrate contents at constant soil moisture levels
The effects of soil moisture on the emission of N₂O, N₂ and CO₂ from the ridge soil, from the interrow soil and from the tractor-compacted interrow soil are shown in Figs. 1–3 (day 0 to 40). N₂O emission rates were generally small at soil moisture levels ≤60% WFPS with mean flux rates ranging between 1 and 12 μg N₂O–N m⁻² h⁻¹. Significantly increased N₂O emission rates were measured at soil moisture contents ≥70% WFPS, with the highest N₂O fluxes occurring at the highest soil moisture level (Figs. 1–3). The maximum N₂O flux rates were 1426 μg N₂O–N m⁻² h⁻¹ from the interrow soil (90% WFPS), 1046 μg N₂O–N m⁻² h⁻¹ from the uncompacted interrow soil (90% WFPS), and 1768 μg

Fig. 1. Mean N₂O flux rates (solid line, n=4)±/− standard deviation (dotted line), N₂ flux rates (gray hexagons), and mean CO₂ flux rates (solid line, n=4)±/− standard deviation (dotted line) from the ridge soil (bulk density = 1.03 g cm⁻³) at different water-filled pore space (WFPS). Nitrate addition (ΔN) was carried out on day 0, the cores were removed from the system on day 42 for drying (ΔD) and reinstalled and rewetted on day 56 (ΔR).
N$_2$O–N m$^{-2}$ h$^{-1}$ from the compacted interrow soil (98% WFPS).

The cumulative N$_2$O emission from the three areas at 90% WFPS decreased in the order ridge > uncompacted interrow > compacted interrow (Table 2) showing that the ridge soil had the highest potential of N$_2$O emission. Although statistically not significant, the CO$_2$ emission from the ridge soil was slightly higher than the CO$_2$ emissions from the compacted and uncompacted interrow soil (Table 3). The greater availability of organic carbon in the ridge soil became more evident when the CO$_2$ production rate was related to the total amount of organic C of the incubated soil cores. This specific mineralization rate increased in the order tractor-compacted interrow soil (1.6 mg CO$_2$–C g$^{-1}$ SOC) < uncompacted interrow soil (3.2 mg CO$_2$–C g$^{-1}$ SOC) < ridge soil (6.6 mg CO$_2$–C g$^{-1}$ SOC).

N$_2$ losses were only observed at the highest soil moisture levels. Except for the uncompacted interrow soil, N$_2$ losses were highest three days after nitrate addition, they ranged between 205 and 1637 µg N$_2$–N m$^{-2}$ h$^{-1}$. Generally, N$_2$ emissions were considerably smaller than the emissions of N$_2$O–N (Figs. 1–3). This resulted in N$_2$/N$_2$O-ratios <0.5, whereas N$_2$/N$_2$O-ratios > 1.0 were only measured two times (1.74 for the emissions from the uncompacted interrow on day 3, and 1.38 for the emissions from the compacted interrow on day 40).

Calculated over all four moisture treatments, the mean initial soil nitrate content after N fertilizer application (77.3 mg KNO$_3$–N per soil core) was 310, 236, and 196 µg N g$^{-1}$ dry soil for the ridge, the uncompacted interrow, and the compacted interrow area, respectively. Taking the initial nitrate concentration of unfertilized cores into account, this corresponded to 95, 99, and 105% of the total amount of NO$_3$–N added.
The CO$_2$ emission from the ridge soil and the uncompacted interrow soil was not influenced by the different soil moisture levels (40–90% WFPS) (Figs. 1–3, Table 3). The only statistically significant effects of soil moisture were the reduced CO$_2$ emission rates from the compacted interrow soil at soil moisture levels above 70% WFPS (Table 3).

3.2. Emission of N$_2$O, N$_2$ and CO$_2$ and nitrate contents after rewetting

Drying the soil cores for two weeks at 30 °C (day 42 until day 55) reduced N$_2$O fluxes to values below 1 µg N$_2$O–N m$^{-2}$ h$^{-1}$ (day 55, Figs. 1–3). Rewetting the soil cores to the initial water content on day 56 induced high N$_2$O emission peaks which exceeded the maximum flux rates measured after nitrate addition at constant soil water contents. The rewetting induced N$_2$O emission was strongly affected by the amount of water added and increased with increasing soil moisture. Maximum N$_2$O flux rates from the differently compacted soils were 2412 µg N$_2$O–N m$^{-2}$ h$^{-1}$ from the ridge soil (90% WFPS), 1559 µg N$_2$O–N m$^{-2}$ h$^{-1}$ from the uncompacted interrow soil (90% WFPS), and 4586 µg N$_2$O–N m$^{-2}$ h$^{-1}$ from the compacted interrow soil (98% WFPS).

Significant N$_2$ emission after rewetting (323 µg N$_2$–N m$^{-2}$ h$^{-1}$) were only measured in the compacted interrow soil at the highest soil moisture level (98% WFPS). The N$_2$/N$_2$O ratio in this treatment was small (0.16) and the total gaseous N losses (N$_2$O–N + N$_2$–N) were clearly dominated by N$_2$O.

Calculated over all four moisture treatments, the mean soil nitrate content at the end of the experiment was 282, 203, and 177 µg N g$^{-1}$ dry soil for the ridge,
the uncompacted interrow, and the compacted interrow area, respectively. Taking the initial nitrate concentration of unfertilized cores into account, this corresponded to 89, 85, and 95% of the total amount of NO₃⁻N added.

In all treatments tested, the mean cumulative CO₂ emission was greater after rewetting than at constant soil moisture after fertilizer application (Table 3). The first peak of CO₂ emission after rewetting tended to decrease with increasing soil moisture; whereas the duration of this CO₂ pulse seemed to be prolonged at higher soil moisture (Figs. 1–3).

3.3. [¹⁵N] N₂O fluxes and ¹⁵N enrichment of the soil nitrate

The ¹⁵N abundance in the soil nitrate-N and in the N₂O emitted after N application was analyzed to calculate the contribution of nitrification and denitrification to the N₂O emitted at different levels of soil moisture. At 40 and 60% WFPS, the mean ¹⁵N label of the soil nitrate-N ranged between 33.8 and 34.7 at.% ¹⁵N day⁻¹ after fertilizer application (Fig. 4). At the end of the incubation period (day 72) the ¹⁵N abundance of the soil nitrate varied between 28.2 and 29.9 at.% ¹⁵N indicating a dilution of the initial nitrate pool by unlabelled soil-derived nitrate through nitrification. The gross nitrification rate was equivalent to 15.8 and 21.1% of the added N fertilizer (day 3–72, data not shown). At a WFPS of 70% there was no change or only a marginal one in the ¹⁵N abundance in soil nitrate during the incubation period (Fig. 4). The ¹⁵N dynamics in N₂O was significantly influenced by soil moisture. The similar ¹⁵N abundance in the soil NO₃⁻N (on day 3) and in the N₂O emitted after N application

Table 3
Cumulative N₂O–N fluxes from differently compacted soil at different soil moisture levels calculated for the three periods: After N-fertilization (15 days), after rewetting of dry soil (15 days), during the total investigated period (total, except for the two weeks of soil drying, 58 days). The total N₂O–N flux (58 days) was related to the amount of N fertilizer applied (4 replicates each)

<table>
<thead>
<tr>
<th>Area</th>
<th>WFPS (%)</th>
<th>N₂O–N emission (mg N₂O–N m⁻²)</th>
<th>Related to N fertilizer (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ridge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>1³</td>
<td>1³</td>
<td>4³</td>
</tr>
<tr>
<td>60</td>
<td>2³</td>
<td>6¹</td>
<td>9⁹</td>
</tr>
<tr>
<td>70</td>
<td>3³</td>
<td>54¹</td>
<td>127⁹</td>
</tr>
<tr>
<td>90</td>
<td>41³</td>
<td>553⁹</td>
<td>1677¹</td>
</tr>
<tr>
<td>Uncompacted</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>2³</td>
<td>4¹</td>
<td>9⁹</td>
</tr>
<tr>
<td>60</td>
<td>3³</td>
<td>3³</td>
<td>9⁹</td>
</tr>
<tr>
<td>70</td>
<td>8³</td>
<td>4¹</td>
<td>20¹</td>
</tr>
<tr>
<td>90</td>
<td>269³</td>
<td>324⁹</td>
<td>1218¹</td>
</tr>
<tr>
<td>Tractor-compacted</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>1³</td>
<td>1³</td>
<td>5⁹</td>
</tr>
<tr>
<td>70</td>
<td>10³</td>
<td>7³</td>
<td>28¹</td>
</tr>
<tr>
<td>90</td>
<td>114³</td>
<td>69³</td>
<td>322¹</td>
</tr>
<tr>
<td>98</td>
<td>49³</td>
<td>1197³</td>
<td>2620¹</td>
</tr>
</tbody>
</table>

Statistical significant differences of N₂O emission from one site during a specific period induced by soil moisture are indicated by different letters (Student-Newman-Keuls-Test, α<0.05).

Table 2
Cumulative CO₂–C fluxes from differently compacted soil at different soil moisture levels calculated for the three periods: After N-fertilization (15 days), after rewetting of dry soil (15 days), during the total investigated period (total, except for the two weeks of soil drying, 58 days) (4 replicates each)

<table>
<thead>
<tr>
<th>Area</th>
<th>WFPS (%)</th>
<th>CO₂ emission (g CO₂–C m⁻²)</th>
<th>Total (58 days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ridge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>3.46⁹</td>
<td>4.51⁹</td>
<td>11.57⁹</td>
</tr>
<tr>
<td>60</td>
<td>3.42⁹</td>
<td>5.22⁹</td>
<td>13.07⁹</td>
</tr>
<tr>
<td>70</td>
<td>3.51⁹</td>
<td>5.23⁹</td>
<td>13.22⁹</td>
</tr>
<tr>
<td>90</td>
<td>3.43⁹</td>
<td>4.60⁹</td>
<td>13.77⁹</td>
</tr>
<tr>
<td>Uncompacted</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>3.37⁹</td>
<td>3.71⁹</td>
<td>10.78⁹</td>
</tr>
<tr>
<td>60</td>
<td>2.23⁹</td>
<td>3.58⁹</td>
<td>9.61⁹</td>
</tr>
<tr>
<td>70</td>
<td>2.09⁹</td>
<td>3.05³</td>
<td>7.92⁹</td>
</tr>
<tr>
<td>90</td>
<td>2.42⁹</td>
<td>2.54⁹</td>
<td>8.29⁹</td>
</tr>
<tr>
<td>Tractor-compacted</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>3.34⁹</td>
<td>4.91⁹</td>
<td>12.28⁹</td>
</tr>
<tr>
<td>70</td>
<td>4.35⁹</td>
<td>4.70⁹</td>
<td>14.49⁹</td>
</tr>
<tr>
<td>90</td>
<td>2.17⁹</td>
<td>3.11⁹</td>
<td>8.45⁹</td>
</tr>
<tr>
<td>98</td>
<td>1.76⁹</td>
<td>3.83⁹</td>
<td>8.96⁹</td>
</tr>
</tbody>
</table>

Statistical significant differences of CO₂ emission from one site during a specific period induced by soil moisture are indicated by different letters (Student-Newman-Keuls-Test, α<0.05).
indicated that N₂O was mainly produced by denitrification at a soil moisture content ≥70% WFPS (Fig. 4). In contrast, the mean ¹⁵N abundance in N₂O during the first 10 days after N application was much smaller for the soil moisture levels ≤60% WFPS. This indicates that the low N₂O emissions observed in these treatments were mainly caused by nitrification. Calculated for the first 10 days after fertilization, nitrification accounted for 83–96% of the total N₂O emission from the soil cores sampled in the ridge and the interrow area at soil moisture levels ≤60% WFPS. The corresponding value for the soil cores from the compacted interrow at 60% WFPS was 75%. There was a considerable increase in ¹⁵N₂O with time for all soil cores with soil moisture levels ≤60% WFPS.

Related to the amount of N nitrified at a WFPS ≤60% in the ridge soil and in the uncompacted interrow soil (calculated from the dilution of ¹⁵N in the nitrate pool) the N₂O–N emitted during the first 2 weeks following nitrate

![Fig. 4. Mean ¹⁵N abundance in soil nitrate (gray diamonds, n=4, +/- standard deviation) and ¹⁵N abundance in N₂O emission (dotted line; black triangles) from the ridge soil (left column), from the uncompacted interrow soil (middle column) and from the tractor-compacted interrow soil (right column) at different water-filled pore space. Nitrate addition (N) was carried out on day 0, the cores were removed from the system on day 42 for drying (D) and reinstalled and rewetted on day 56 (R). The ¹⁵N₂O data include measurements with replicates (n=4, +/- standard deviation) and data from single soil cores (without standard deviation).](image-url)
addition varied from 0.16 to 0.39% of the gross nitrification rate.

4. Discussion

4.1. Emissions after nitrate addition

Increasing N$_2$O emission rates with increasing soil water contents were often reported from laboratory and field studies and attributed to an increased denitrification activity induced by a reduced O$_2$ diffusion into the soil (i.e. Mosier et al., 1986; Clayton et al., 1994; Flessa et al., 1995; Corre et al., 1996; MacKenzie et al., 1997; Dobbie and Smith, 2001; Ruser et al., 2001). The strong increase in N$_2$O emissions between 60 and 70% WFPS supports the hypothesis of a threshold WFPS for N$_2$O production by denitrification as proposed by Davidson (1991). A similar WFPS threshold for strongly increased N$_2$O emissions from soils was also reported by De Klein and Van Logtestijn (1996) and by Dobbie and Smith (2001).

At 90% WFPS, the ridge soil had the highest N$_2$O emission rates. This result suggests that the N$_2$O emission at this WFPS was influenced by the availability of organic carbon. The greater specific substrate availability may have favored the formation of anoxic microsites, which are known to promote N$_2$O emissions, especially if soil nitrate availability is high (Flessa and Beese, 2000).

In a field study at the same site, Ruser et al. (1998) found that the mean water-filled pore space of the ridge soil was 49% during the cropping period and that it never exceeded 67%. Furthermore, they found significantly lower N$_2$O emissions from the ridge soil than from the interrow soil where the mean WFPS percentage was considerably higher (58% in the uncompacted interrow soil and 85% in the tractor-compacted interrow soil). The results from our experiment demonstrate that the low N$_2$O emission from the ridge soil under field conditions were mainly a result of the persistent low soil water contents.

Our data show that different soil moisture contents after N fertilization considerably influenced the fertilizer-related N$_2$O emission factors and that these emission factors strongly increased at a WFPS \geq 70%. This may be a key factor for the great inter-annual variability of N$_2$O emission factors found in field studies even if soil management and fertilization was nearly unchanged (Kaiser et al., 1998; Kaiser and Ruser, 2000; Leidel et al., 2000). The importance of soil moisture in fertilizer-induced N$_2$O emissions was also stressed by Dobbie et al. (1999), who found a strong positive correlation between the amount of rainfall during the first 4 weeks after N application and the cumulative N$_2$O emission in field measurements.

In all differently compacted areas, N$_2$ emissions were only observed in the highest soil moisture treatment. This matches the assumption of many models, that the portion of N$_2$ to the total gaseous N-losses during denitrification increases with increasing soil water contents (Del Grosso et al., 2000; Parton et al., 1996; Davidson, 1992). As a result of temporally different responses of the enzymes involved in nitrate- and N$_2$O-reduction during denitrification the N$_2$/N$_2$O ratio is not stable over time (Firestone and Tiedje, 1979). Weier et al. (1993) investigated the N$_2$/N$_2$O-ratio produced during denitrification in four soils with different texture. Generally, the N$_2$/N$_2$O ratio was highest during the first 3 days of the incubation experiment and declined to day 5 in the treatments where no glucose as carbon source was added. This is in good agreement with our results, where the N$_2$ emissions and the N$_2$/N$_2$O-ratios were highest 3 days after the nitrate addition followed by a decline in the N$_2$ emission.

The generally low N$_2$ emissions even at high soil moisture levels were probably a result of the high soil nitrate content in all soil cores. High soil nitrate concentrations have been shown to inhibit N$_2$O reductase activity due to the competitive effect of nitrate and N$_2$O as terminal electron acceptors during denitrification (Cho and Sakdian, 1978; Blackmer and Bremner, 1978). A similar effect of soil nitrate availability on the N$_2$/N$_2$O ratio was also found in several field studies (Yamulki et al., 1995; Swerts et al., 1996).

Except for the emission from the compacted interrow soil at high soil moistures, CO$_2$ emissions were not influenced by the different soil moisture levels. These results show that a wide range of soil moisture provided optimal conditions for heterotrophic activity in this soil. This observation agrees with the results of field studies on CO$_2$ emissions from grassland (Frank et al., 2002) and forest soils (Drewitt et al., 2002) which indicated only a minor or no relationship between CO$_2$ emissions and soil moisture contents. Doran et al. (1990) proposed quadratic models to describe the relationship between WFPS and soil respiration in differently textured soils. They found highest soil respiration rates between 40 and 70% WFPS in most of the soils they investigated. At lower WFPS, soil respiration was reduced considerably by water availability; whereas at higher WFPS CO$_2$ production decreased as a result of reduced aeration. Our results indicate that the relation between soil respiration and WFPS was influenced by the existence of macropores because the CO$_2$ emission rates from the compacted interrow soil, where macropores were largely destroyed by tractor traffic, were significantly reduced at soil moisture levels above 70% WFPS.

4.2. Emission after rewetting

Short-term N$_2$O pulses after rewetting dry soil have been observed in several studies (Smith and Parsons, 1985; Cates and Keeney, 1987; Rudaz et al., 1991). The magnitude of the rewetting-induced N$_2$O emissions, the contribution of nitrification and denitrification to the emissions, as well as the ratio of N$_2$/N$_2$O during denitrification were shown to be highly variable (Firestone and Tiedje, 1979; Firestone and
Davidson, 1989). Firestone and Tiedje (1979) found increasing amounts of N$_2$O from denitrification when soil moisture reached or exceeded field capacity after rewetting.

The high NO$_3^-$ concentrations were probably the key factor resulting in N$_2$O being the main end product of denitrification. The results show that significant N$_2$ emission after rewetting was restricted to the treatment in which soil water saturation and denitrification activity was greatest.

As compared to nitrate addition, the higher CO$_2$ fluxes after rewetting indicate the release of easily available organic matter during drying-rewetting which resulted in an increased microbial C consumption following rewetting. The change in C availability induced by rewetting events was also shown in field and laboratory studies on the controls of dissolved organic carbon (DOC) production in soils. Rewetting after dry periods increased the concentration of DOC considerably (Kalbitz et al., 2000). As summarized by Lundquist et al. (1999), several processes may have contributed to increased DOC and C availability after drying-rewetting: (i) reduced microbial decomposition in dry periods, (ii) enhanced turnover of microbial biomass, and (iii) release of available carbon by the disruption of soil aggregates. The increased C turnover following rewetting is associated with an enhanced O$_2$ consumption which stimulates denitrification (Flessa and Beese, 1995). The observed phenomenon of a decreased height but prolonged duration of CO$_2$ emission pulses with increased soil moisture after rewetting might be a result of the reduced gas exchange.

4.3. [15N] N$_2$O fluxes

The low gross nitrification at high soil moistures seemed to be affected by a reduced aeration because there was no change or only a marginal one in the 15N abundance in soil nitrification during the incubation period.

The results of the sources of the N$_2$O emission as affected by soil moisture agree with the observations of Wolf and Russow (2000) and of Russow et al. (2000) who found that N$_2$O emission from soils originated mainly from nitrification at soil moistures below 60% WFPS. Additionally, our results show that the proportion of N$_2$O evolved during nitrification was rather small. Related to the amount of N nitrified at a WFPS \leq 60% in the ridge soil and in the uncompacted interrow soil (calculated from the dilution of 15N in the nitrate pool) the N$_2$O–N emitted during the first two weeks following nitrate addition varied from 0.16 to 0.39% of the gross nitrification rate. The considerably increase in 15N$_2$O 2 weeks after the nitrate addition was probably a result of an increasing 15N labeling of the soil NH$_4^+$ pool caused by remineralization of the 15NO$_3^-$ added. Therefore, it was difficult to assess the contribution of nitrification and denitrification to the N$_2$O emission induced by rewetting from the 15N data because we cannot exclude an increasing 15N labeling of the soil NH$_4^+$ pool during our experiment. However, the prompt increase in N$_2$O emission by several orders of magnitude directly after rewetting is more typical for denitrification than for nitrification (Firestone and Davidson, 1989) and the high 15N labeling of the N$_2$O produced also suggests that the increased C availability and O$_2$ consumption induced by rewetting favored N$_2$O production by denitrification.

5. Conclusions

Our results show the decisive influence of soil moisture on N$_2$O production by nitrification and denitrification in fertilized soil and on the related N$_2$O emission rates. They confirm model assumptions that N$_2$O emission induced by denitrification increases when soil moisture rises above 60–70% WFPS and that the N$_2$/N$_2$O ratio during denitrification is small when soil nitrate contents are high. Under our experimental conditions (high nitrate availability) N$_2$O was the primary end product of denitrification. Additionally, the results show that the strongly increased N$_2$O emissions found in field experiments from compacted soils (Hansen et al., 1993; Ruser et al., 1998) are primarily a result of an increase of the water-filled pore space. Additionally, reduced plant N uptake in compacted soils was shown to contribute to high N$_2$O emission rates (Ruser et al., 1998).

Acknowledgements

We like to thank G. Hufnagel, R. Schilling and S. Behrends for excellent laboratory support and encouraged help and the crew of the FAM-research station for technical support. Additionally, we thank I. Wolf for critical discussion of our 15N-N$_2$O and N$_2$ emission data. This study was funded by the Deutsche Bundesstiftung Umwelt (DBU).

References

Isermann, K., 1994. Agriculture’s share in the emission of trace gases affecting the climate and some case-oriented proposals for sufficiently reducing this share. Environmental Pollution 83, 95–111.

Russow, R., Stevens, R.J., Laughlin, R.J., 1996. Accuracy and precision for measurements of the mass ratio 30/28 in dinitrogen from air samples and its application to the investigation of N losses from soil by denitrification. Isotopes in Environmental and Health Studies 32, 289–297.

Schmidt, G., Segschneider, H.J., Russow, R., 1997. Bestimmung der 15N Häufigkeit bei nichtstatischer 15N-Verteilung in N2 sowie bei N2O in...