Crystallization and preliminary crystallographic studies of pink color chromoprotein from *Pleurotus salmonoeastramineus* L. Vass.

NAOKI SHIBATA, a MANABU GOHOW, a TSUYOSHI INOUE, a CHIZUKO NAGANO, a KAZUNARI INABA, b HIDEKO TAKEKUMA, c SHIN-ICHI TAKEKUMA, c ZEN-ICHI YOSHIDA and YASUSHI KAI* at aDepartment of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565, Japan, bDepartment of Food and Nutrition, Faculty of Agriculture, Kinki University, Nakamachi, Nara 631, Japan, and cDepartment of Applied Chemistry, Faculty of Science and Engineering, Kinki University, Kowakae, Higashi- Osaka 577, Japan. E-mail: kai@chem.eng.osaka-u.ac.jp

(Received 2 August 1996; accepted 21 November 1996)

Abstract

A chromoprotein from *Pleurotus salmonoeastramineus* L. Vass. has been purified and crystallized. The needle-shaped crystal has monoclinic space group C2 with the cell dimensions of \(a = 118.5\), \(b = 59.7\), \(c = 31.8\) Å and \(\beta = 114°\). The crystal diffracts to 1.8Å resolution with a synchrotron radiation X-ray source.

1. Introduction

Pleurotus salmonoeastramineus L. Vass., a type of mushroom found in Siberia, Japan and New Guinea, is known for its beautiful pink color. This mushroom includes a pink chromoprotein with an absorption spectrum maximum at 496 nm. This protein has a pigment molecule, 3H-indol-3-one (I) which occupies a part of the active site (Takekuma, Takekuma, Matsubara, Inaba & Yoshida, 1994) and has three kinds of metals, Zn, Fe, and Cu. 3H-indol-3-one has an absorption maximum at 456nm in methanol and a bathochromic shift occurs in the chromoprotein. Takekuma et al. have reported that the protein produces oxygen molecules from water on light irradiation. This phenomenon implies that this mushroom has a photosynthetic function in which the chromoprotein plays an important role (Takekuma et al., 1994). The aim of the present study is to reveal the structure-function relationship of the chromoprotein with the novel photosynthetic mechanism.

2. Purification and crystallization

Chromoprotein was extracted by soaking the mushrooms in water. Crude chromoprotein was freeze-dried and stored at 195 K. The protein (0.5 g) was dissolved in 1 ml of Tris–HCl buffer (pH 7.0), then applied onto a Sephacryl S-300HR column (Pharmacia, 3 × 80 cm, pre-equilibrated in Tris–HCl buffer, pH 7.0). The fractions containing the chromoprotein were collected and dialyzed for 12 h against glycine–NaOH buffer (pH 10.0). It was loaded on DEAE–Sepharose column (2 × 30 cm) equilibrated in glycine–NaOH buffer (pH 10.0) and then washed with 20mM NaCl solution in the elution buffer. The purified protein was dialyzed against water and concentrated up to 10 A cm\(^{-1}\) at 496 nm.

Single crystals were obtained by the vapor-diffusion method. The reservoir consists of 50 mM buffer solution (Tris–HCl, pH 9.0) containing 21% (w/v) polyethylene glycol 4600 (Sigma) and 200 mM sodium formate. The protein drop was prepared by mixing 3 μl of protein solution with 3 μl of reservoir solution. Single red-colored crystals appeared as prismatic needles within one week (Fig. 1).

3. X-ray analysis

Preliminary X-ray experiments were carried out on a Rigaku R-AXIS IIC imaging-plate detector system equipped with a Rigaku RU-300 rotating-anode X-ray generator (fine-focused Cu Kα, operating at 40 kV and 100 mA). The Laue symmetry and cell dimensions were determined by the *PROCESS* program package (Higashi, 1989; Sato et al., 1992) and systematic absences were confirmed by pseudo-precession pictures using the program *HKL2PLOT* (Eleanor Dodson, unpublished data; Collaborative Computational Project, Number 4, 1994). The crystals belong to monoclinic space group C2 with the unit-cell dimensions \(a = 118.5\), \(b = 59.7\), \(c = 31.8\) Å and \(\beta = 114°\). Supposing one molecule per asymmetric unit, \(V_m\) value is calculated to be 2.1 A\(^3\) Da\(^{-1}\) (Matthews, 1968). Diffraction was found on imaging plates up to 2.5 Å resolution.

Fig. 1. Crystals of chromoprotein from *Pleurotus salmonoeastramineus* L. Vass. The biggest crystal is approximately 0.5 × 0.1 × 0.07 mm.
Diffraction intensity data were collected by using synchrotron radiation (BL-18B beamline, Photon Factory, KEK, Japan). The Weissenberg camera for macromolecules (Sakabe, 1983) and large imaging plates (40 × 80 cm) were used for data collection. The crystal diffracts up to 1.8 Å resolution and 15 frames with a rotation angle of 12.5° for each frame were stored (Fig. 2). During the data collection no obvious radiation damage was detected. Data processing was carried out by the programs DENZO and SCALEPACK (Otwinowski, 1993). The combined set gave 71 241 reflections to 1.8 Å resolution in total, which were reduced 18 198 unique reflections with an R_{merge} of 4.8% ($R_{\text{merge}} = \sum |I - \langle I \rangle| / \sum I$) and the completeness of 85.7% (61.4% for 1.80–1.86 Å).

A search for heavy-atom derivatives is currently under way for structure determination by isomorphous replacement method.

We thank Professor N. Sakabe, Dr N. Watanabe and Dr M. Suzuki, for support in data collection at KEK, Japan.

References

