Section 2
Chapter 1,399

Isolation of serine:glyoxylate aminotransferase from cucumber cotyledons

Hondred, D.; Hunter, J.M.; Keith, R.; Titus, D.E.; Becker, W.M.

Plant Physiology 79(1): 95-102


ISSN/ISBN: 0032-0889
PMID: 16664409
DOI: 10.1104/pp.79.1.95
Accession: 001398013

Download citation:  

Serine:glyoxylate aminotransferase, a marker enzyme for leaf peroxisomes, has been purified to homogeneity from cucumber cotyledons (Cucumis sativus cv Improved Long Green). The isolation procedure involved precipitation with polyethyleneimine, a two-step ammonium sulfate fractionation (35 to 45%), gel filtration on Ultrogel AcA 34, and ion exchange chromatography on diethylaminoethyl-cellulose, first in the presence of pyridoxal-5-phosphate, and then in its absence. The enzyme was purified approximately 690-fold to a final specific activity of 34.4 units per milligram. Electrophoresis of the purified enzyme on sodium dodecyl sulfate-polyacrylamide gels revealed two polypeptide bands with apparent molecular weights of approximately 47,000 and 45,000. Both polypeptides coeluted with enzyme activity under all chromatographic conditions investigated, both were localized to the peroxisome, and both accumulated in cotyledons as enzyme activity increased during development. The two polypeptides appear not to be structurally related, since they showed little immunological cross-reactivity and gave rise to different peptide fragments when subjected to partial proteolytic digestion. Antiserum raised against either the denatured enzyme or the 45,000-dalton polypeptide did not react with any other polypeptides present in a crude cotyledonary homogenate. The purified enzyme also had alanine:glyoxylate aminotransferase activity, but was about twice as active with serine as the amino donor.

Full Text Article emailed within 0-6 h: $19.90