+ Site Statistics
+ Search Articles
+ Subscribe to Site Feeds
Most Shared
PDF Full Text
+ PDF Full Text
Request PDF Full Text
+ Follow Us
Follow on Facebook
Follow on Twitter
Follow on LinkedIn

+ Translate
+ Recently Requested

Cupric ions induce both an efflux of potassium and low molecular mass metabolites in Pseudomonas syringae

Cupric ions induce both an efflux of potassium and low molecular mass metabolites in Pseudomonas syringae

FEMS Microbiology Letters 72(1-2): 109-112

Cu2+ induced an efflux of potassium, inorganic phosphate, 260 nm-absorbing materials and ribose-containing molecules in P. syringae. No detectable amounts of aspartic and glutamic acids leaked from the cells.

(PDF emailed within 0-6 h: $19.90)

Accession: 001790396

Download citation: RISBibTeXText

DOI: 10.1111/j.1574-6968.1990.tb03871.x

Related references

Induction of potassium efflux by cupric ions in Pseudomonas syringae ATCC 12271 and its correlation with cell viability. Microbios 60(244-245): 141-150, 1989

The antibacterial action of cupric ions in Pseudomonas syringae. FEMS microbiology letters Federation of European Microbiological Societies, 79(2-3): 303-308, 1991

Tn 5 mutants of pseudomonas syringae pathovar syringae unable to induce the hypersensitive response or stimulate potassium hydrogen exchange in tobacco. Journal of Cellular Biochemistry Supplement (10 PART C): 30, 1986

Concurrent loss in tn 5 mutants of pseudomonas syringae pathovar syringae of the ability to induce the hypersensitive response and host plasma membrane potassium proton exchange in tobacco. Phytopathology 77(9): 1268-1272, 1987

A note: Serological study of four pathovars of Pseudomonas syringae: Pseudomonas syringae aptata, Pseudomonas syringae tabaci, Pseudomonas syringae mors prunorum and Pseudomonas syringae phaseolicola. Journal of Applied Bacteriology 74(6): 683-687, 1993

The effect of aliphatic alcohols on efflux of hydrogen ions and potassium ions from pseudomonas aeruginosa. Microbios Letters 9(34): 91-96, 1978

The PseEF efflux system is a virulence factor of Pseudomonas syringae pv. syringae. Journal of Microbiology 50(1): 79-90, 2012

Molecular and Physiological Characterization of Pseudomonas syringae pv. tomato and Pseudomonas syringae pv. maculicola Strains That Produce the Phytotoxin Coronatine. Applied and Environmental Microbiology 61(10): 3530-3536, 1995

Molecular cloning of a Pseudomonas syringae pv. syringae gene cluster that enables Pseudomonas fluorescens to elicit the hypersensitive response in tobacco plants. Journal of Bacteriology 170(10): 4748-4756, 1988

Peach and nectarine blight induce by Pseudomonas syringae pv. syringae. Summa Phytopathologica 22(1): 48-50, 1996

Comparison of ethylene-producing Pseudomonas syringae strains isolated from kudzu (Pueraria lobata) with Pseudomonas syringae pv. phaseolicola and Pseudomonas syringae pv. glycinea. European Journal of Plant Pathology 103(9): 795-802, 1997

Identification of flavonol glycosides from Prunus avium leaves which induce the production of syringomycin by Pseudomonas syringae pv. syringae. Acta Horticulturae ( 381): 662-666, 1994

Characterization of plant signals that induce the syrb gene required for syringomycin production by pseudomonas syringae pathovar syringae. Phytopathology 80(10): 1038, 1990

Plasmid dna relationships in plant pathogenic pseudomonas syringae pathovar tabaci pseudomonas syringae pathovar angulata pseudomonas syringae pathovar coronafaciens and pseudomonas syringae pathovar striafaciens. Abstracts of the Annual Meeting of the American Society for Microbiology 85: 134, 1985

Toxin production as a distinguishing character for some pseudomonas syringae pathovars pseudomonas syringae var glycinea vs. pseudomonas syringae var phaseolicola. Physiological Plant Pathology 20(1): 91-98, 1982