Stochastic analysis of nonstationary subsurface solute transport-2. Conditional moments
Graham, W.; McLaughlin, D.
Water Resources Research 25(11): 2331-2355
1989
ISSN/ISBN: 0043-1397 DOI: 10.1029/wr025i011p02331
Accession: 001953228
Stochastic analyses of subsurface transport indicate that the concentration distributions of individual solute plumes may differ significantly from those predicted by unconditional ensemble statistics, particularly in the near-source region. This paper presents a method for developing improved concentration predictions which are tailored to site-specific conditions.
PDF emailed within 0-6 h: $19.90
Related References
Graham Wendy; McLaughlin Dennis 1989: Stochastic analysis of nonstationary subsurface solute transport; 1, Unconditional moments Water Resources Research 25(2): 215-232Graham, W.; Mclaughlin, D. 1988: A comparison of numerical solution techniques for the stochastic analysis of nonstationary, transient, subsurface mass transport - Une comparaison des techniques de résolution numérique pour l'analyse stochastique du transport de masse non stationnaire, transitoire de subsurface Computational Methods in Water Resources International Conference, Mit 7 : 191-196
Hu, B.X.; Wu, J.C.; He, C.M. 2006: A numerical method of moments for solute transport in nonstationary flow fields Transport in Porous Media 62(1): 1-22
Hu, B.X. 2006: Stochastic study of solute transport in a nonstationary medium Ground Water 44(2): 222-233
Jichun Wu; Bill, X. Hu; Dongxiao Zhang; Craig Shirley 2003: A three-dimensional numerical method of moments for groundwater flow and solute transport in a nonstationary conductivity field Advances in Water Resources 26(11): 1149-1169
Jichun Wu; Bill, X.H. 2004: Three-dimensional numerical method of moments for linear equilibrium-adsorbing solute transport in physically and chemically nonstationary formations Mathematical Geology 36(2): 239-265
Hu, B.X.; Wu, J.; Zhang, D. 2004: A numerical method of moments for solute transport in physically and chemically nonstationary formations: linear equilibrium sorption with random Kd Stoch. Environ. Res. Risk Assess. (Print) 18(1): 22-30
Hu, B.X.; Wu, J.; Zhang, D. 2004: A numerical method of moments for solute transport in physically and chemically nonstationary formations: linear equilibrium sorption with random Kd Stochastic Environmental Research and Risk Assessment 18(1): 22-30
Wu Jichun; Hu Bill X. 2007: Numerical method of moments for solute transport in a nonstationary flow field conditioned on hydraulic conductivity and head measurements Stochastic Environmental Research and Risk Assessment 21(6): 665-682
Wu Jichun; Hu Bill X.; Zhang Dongxiao 2003: Applications of nonstationary stochastic theory to solute transport in multi-scale geological media Journal of Hydrology 275(3-4): 208-228
Jichun, W.U.; Hu, B.X.; Dongxiao, Z.H.A.N.G. 2003: Applications of nonstationary stochastic theory to solute transport in multi-scale geological media J. Hydrol. (Amst.) 275(3-4): 208-228
Neuman, S P. 1993: Eulerian-Lagrangian Theory of transport in space-time nonstationary velocity fields: Exact nonlocal formalism by conditional moments and weak approximation Water Resources Research 29(3): 633-645
Harter, T.Y.h, T. 1996: Conditional stochastic analysis of solute transport in heterogeneous, variably saturated soils Water resources research 32(6): 1597-1609
Dagan Gedeon 1982: Stochastic modeling of groundwater flow by unconditional and conditional probabilities; 2, The solute transport Water Resources Research 18(4): 835-848
Schmid, B.H. 1995: On the transient storage equations for longitudinal solute transport in open channels : temporal moments accounting for the effects of first-order decay - Sur les équations de stockage du transport longitudinal de soluté dans des canaux à surface libre : moments temporels tenant compte des effets de décroissance du première ordre Journal of Hydraulic Research 33(5): 595-610
Pardoux, E. 1983: Semi-linear stochastic models: Computation of moments and conditional moments Bulletin of Mathematical Biology 45(4): 591-597
Hu, B.X.; Wu, J.C.; Zhang, D.; Shirley, C. 2002: A numerical method of moments for solute flux in nonstationary flow fields Acta Universitatis Carolinae Geologica 46(2-3): 109-112
Dagan, G. 1985: Stochastic modelling of solute transport by groundwater flow: state of the art - Elaboration de modèle stochastique pour l'étude du transport de soluté par l'écoulement de l'eau souterraine International Union of Geodesy and Geophysics. General Assembly 18. Symposium on Groundwater Quantity and Quality (1983) (146): 91-101
Fiori, A.; Cvetkovic, V.; Dagan, G.; Attinger, S.; Bellin, A.; Dietrich, P.; Zech, A.; Teutsch, G. 2016: Debates-Stochastic subsurface hydrology from theory to practice: The relevance of stochastic subsurface hydrology to practical problems of contaminant transport and remediation. What is characterization and stochastic theory good for? Water Resources Research 52(12): 9228-9234
Balliston, N.E.; McCarter, C.P.R.; Price, J.S. 2018: Microtopographical and hydrophysical controls on subsurface flow and solute transport: A continuous solute release experiment in a subarctic bog Hydrological Processes 32(19): 2963-2975