+ Site Statistics
+ Search Articles
+ Subscribe to Site Feeds
EurekaMag Most Shared ContentMost Shared
EurekaMag PDF Full Text ContentPDF Full Text
+ PDF Full Text
Request PDF Full TextRequest PDF Full Text
+ Follow Us
Follow on FacebookFollow on Facebook
Follow on TwitterFollow on Twitter
Follow on Google+Follow on Google+
Follow on LinkedInFollow on LinkedIn

+ Translate

The use of incompatibility in breeding programmes

The use of incompatibility in breeding programmes

Reproductive biology and plant breeding: 177-186

The subject is reviewed with examples taken from a number of crop species. Terms are defined, in particular self incompatibility (SI) and cross incompatibility (CI). Techniques to overcome incompatibility, eg., in vitro pollination and fusion of single isolated gametes, and the use of pseudocompatibility, are discussed.

(PDF 0-2 workdays service: $29.90)

Accession: 002530376

Download citation: RISBibTeXText

Related references

A method of air-layering for overcoming graft incompatibility in Pine breeding programmes. Rhodesia Science News, Salisbury. 3: 4, 102-7, 1969

Farm animal breeding from show ring judging over systematic performance breeding programmes to molecular breeding and conservation of genetic variability: from exterieur judging to scientifically designed performance breeding programmes. Zuchtungskunde 75(5): 309-316, 2003

Studies on optimisation of cattle breeding programmes in Poland. I. Methods of designing breeding programmes. Roczniki Nauk Rolniczych Seria B, Zootechniczna 107(4): 49-65, 1991

Resynthesis of Brassica napus L. for self-incompatibility: self-incompatibility reaction, inheritance and breeding potential. Plant Breeding 124(1): 13-19, 2005

Breeding plans for two cattle populations with different breeding programmes and reciprocal exchange of breeding animals. 35th Annual Meeting of the EAAP, The Hague, Netherlands, 6-9 August 1984 Vol 1 Summaries Study Commissions Genetics, nutrition, management (Paper G3.6): 2, 1984

Comparative estimation of breeding components of Estonian cattle breeds and their use in breeding programmes. Agraarteadus 12(4): 224-247, 2001

Optimum designs for breeding programmes under mass selection with an application in fish breeding. Animal Science (Pencaitland) 63(3): 563-576, 1996

Selection criteria for beef cattle breeding and the aims of breeding programmes. Selektion und Reproduktion zur Sicherung eines hohen Leistungsfortschritts in der industriemassigen Tierproduktion Wissenschaftliche Tagung 1979 Teil 1 Leipzig, am 7 und 8 Februar 1979: 88-102, 1980

Internationalisation of breeding programmes-breeding egg-type chickens for a global market. Proceedings of the 6th World Congress on Genetics Applied to Livestock Production, Armidale, Australia, January 11-16, 1998 Volume 26: Quantitative genetic theory; selection theory and experiments; internationalisation of breeding programs; detection of quantitative trait loci; exploitation of quantitative trait loci; quantitative trait loci maps; transgenics; developmental genetics: 135-142, 1998

The possibilities and benefits of nucleus transfer breeding programmes in cattle breeding. KB Mitteilungen 27(2): 6-10, 1989

The development of animal breeding enterprises in the next decades: reasons to change the structure of breeding programmes. Acta Agriculturae Scandinavica Section A, Animal Science (Supplementum 28): 61-67, 1998

Breeding maize for resistance to the most important leaf and stem diseases in current breeding programmes. Semenarstvo 7(2): 57-72, 1990

Development of the infrastructure in small ruminant breeding programmes: the organization of breeding and commercial flocks. Cahiers Options Mediterraneennes 11: 67-78, 1995

Methodology of breeding programmes for pure breeding in cattle while optimising genetic progress and profit. Methodik der Zuchtplanung fur die Reinzucht beim Rind bei Optimierung nach Zuchtfortschritt und Zuchtungsgewinn: 226, 1974

Breeding programmes for smallholder sheep farming systems: II. Optimization of cooperative village breeding schemes. Journal of Animal Breeding and Genetics 131(5): 350-357, 2015