Estrogen-related receptor, hERR1, modulates estrogen receptor-mediated response of human lactoferrin gene promoter

Yang, N.; Shigeta, H.; Shi, H.; Teng, C.T.

Journal of Biological Chemistry 271(10): 5795-5804


ISSN/ISBN: 0021-9258
PMID: 8621448
DOI: 10.1074/jbc.271.10.5795
Accession: 002832105

Download citation:  

Article/Abstract emailed within 0-6 h
Payments are secure & encrypted
Powered by Stripe
Powered by PayPal

We have shown previously that estrogen-stimulated transcription from the human lactoferrin gene in RL95-2 endometrium carcinoma cells is mediated through an imperfect estrogen response element (ERE) at the 5 -flanking region of the gene. Upstream from the ERE, a DNA sequence (-418 to -378, FP1) was selectively protected from DNase I digestion by nuclear extracts from endometrial and mammary gland cell lines. In this report, using the electrophoresis mobility shift assay, site-directed mutagenesis, and DNA methylation interference analyses, we show that three different nuclear proteins bind to the FP1 region (C1, C2, and C3 sites). The nuclear receptor, COUP-TF, binds to the C2 site. Mutations in the C1 binding region abolish C1 complex formation and reduce estrogen-dependent transcription from the lactoferrin ERE. When the imperfect ERE of the lactoferrin gene is converted to a perfect palindromic structure, the enhancing effect of the C1 binding element for estrogen responsiveness was abolished. We isolated a complementary DNA (cDNA) clone from an RL95-2 expression library that encodes the C1 site-binding protein. The encoded polypeptide maintains 99% amino acid identity with the previously described orphan nuclear receptor hERR1. A 2.2-kilobase mRNA was detected in RL95-2 cells by the newly isolated cDNA but not by the first 180 base pair of the published hERR1 sequence. By Western analysis, a major 42-kDa protein is detected in the RL95-2 nuclear extract with antibody generated against GST-hERR1 fusion protein. Finally, we show that the hERR1 interacts with the human estrogen receptor through protein-protein contacts.