+ Translate
+ Most Popular
The pigeon tick (Argas reflexus): its biology, ecology, and epidemiological aspects
Prevalence of hemoglobin abnormalities in Kebili (Tunisian South)
Lipogranuloma: a preventable complication of dacryocystorhinostomy
Value of basal plasma cortisol assays in the assessment of pituitary-adrenal insufficiency
Bees from the Belgian Congo. The acraensis group of Anthophora
Placing gingival retraction cord
Total serum IgE, allergy skin testing, and the radioallergosorbent test for the diagnosis of allergy in asthmatic children
Acariens plumicoles Analgesoidea parasites des oiseaux du Maroc
Injuries of terminal phalanges of the fingers in children
Biology of flowering and nectar production in pear (Pyrus communis)
Das Reliktvorkommen der Aspisviper (Vipera aspis L.) im Schwarzwald
Hydrological modelling of drained blanket peatland
Pathologic morphology and clinical significance of the anomalous origin of the left circumflex coronary artery from the right coronary artery. General review and autopsy analysis of 30 cases
Cyto genetic analyses of lymphocyte cultures after exposure to calcium cyclamate
Axelrodia riesei, a new characoid fish from Upper Rio Meta in Colombia With remarks concerning the genus Axelrodia and description of a similar, sympatric, Hyphessobrycon-species
Favorable evolution of a case of tuberculosis of pancreas under antibiotic action
RIFM fragrance ingredient safety assessment, Valencene, CAS Registry Number 4630-07-3
Parenteral microemulsions: an overview
Temperate pasture: management for grazing and conservation
Evaluation of a new coprocessed compound based on lactose and maize starch for tablet formulation
Thermal expansion and cracking of three confined water-saturated igneous rocks to 800C
Revision of the genera of the tribe Stigmoderini (Coleoptera: Buprestidae) a discussion of phylogenetic relationships
Anal tuberculosis. Report of a case
Gastric tuberculosis in the past and present
Adaptive responses of the cardiovascular system to prolonged spaceflight conditions: assessment with Holter monitoring

The influenza A virus M1 protein interacts with the cellular receptor of activated C kinase (RACK) 1 and can be phosphorylated by protein kinase C

The influenza A virus M1 protein interacts with the cellular receptor of activated C kinase (RACK) 1 and can be phosphorylated by protein kinase C

Veterinary Microbiology 74(1-2): 87-100

ISSN/ISBN: 0378-1135

PMID: 10799781

DOI: 10.1016/s0378-1135(00)00169-3

The M1 protein of influenza A virus has multiple regulatory functions during the infectious cycle, which include mediation of nuclear export of viral ribonucleoproteins, inhibition of viral transcription and a crucial role in virus assembly and budding. The only known modification of the M1 protein is by phosphorylation through yet-to-be-identified kinases. We postulated that at least some of the M1 functions are exerted or regulated through interactions with cellular components. In a screen for such cellular mediators, the protein receptor of the activated C-kinase (RACK 1) was identified by its interaction with the viral M1 protein in the yeast two hybrid system. The physical M1-RACK 1 interaction was confirmed in glutathione-S-transferase-based coprecipitation assays for the diverged M1 proteins of avian, swine and human influenza A virus strains. This conservation suggests that the M1-RACK 1 interaction is of general importance during influenza A virus infections. RACK 1 has previously been identified to specifically bind the activated form of protein kinase C (PKC) and is assumed to anchor the kinase at membranes in the vicinity of its substrates. Since the M1 protein becomes phosphorylated during influenza virus infection, we examined if PKC could catalyze the phosphate transfer. We demonstrate that virion-derived and recombinant M1 protein can indeed be efficiently phosphorylated by purified PKC. Moreover, in cell extracts, we detected M1 phosphorylation activity that was strongly reduced in the presence of the PKC-specific inhibitor compound GF109203X. These data suggest that PKC is the main M1-phosphorylating activity in the cell. Since both, the M1 protein and PKC have been shown to interact with RACK 1, we suggest that the M1-RACK 1 interaction is involved in M1 phosphorylation.

Please choose payment method:

(PDF emailed within 0-6 h: $19.90)

Accession: 003589948

Download citation: RISBibTeXText

Related references

Phosphorylated mitogen-activated protein kinase (MAPK/ERK-P), protein kinase of 38 kDa (p38-P), stress-activated protein kinase (SAPK/JNK-P), and calcium/calmodulin-dependent kinase II (CaM kinase II) are differentially expressed in tau deposits in neurons and glial cells in tauopathies. Journal of Neural Transmission 108(12): 1397-1415, 2001

Tumor necrosis factor signaling to stress-activated protein kinase (SAPK)/Jun NH2-terminal kinase (JNK) and p38. Germinal center kinase couples TRAF2 to mitogen-activated protein kinase/ERK kinase kinase 1 and SAPK while receptor interacting protein associates with a mitogen-activated protein kinase kinase kinase upstream of MKK6 and p38. Journal of Biological Chemistry 273(35): 22681-22692, 1998

Identification of a receptor for activated protein kinase C1 (Pm-RACK1), a cellular gene product from black tiger shrimp (Penaeus monodon) interacts with a protein, VP9 from the white spot syndrome virus. Fish and Shellfish Immunology 26(3): 509-514, 2009

The catalytic subunit of protein phosphatase 2A (PP2Ac) promotes DNA hypomethylation by suppressing the phosphorylated mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase (MEK)/phosphorylated ERK/DNMT1 protein pathway in T-cells from controls and systemic lupus erythematosus patients. Journal of Biological Chemistry 288(30): 21936-21944, 2013

Early activation of mitogen-activated protein kinase kinase, extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, and c-Jun N-terminal kinase in response to binding of simian immunodeficiency virus to Jurkat T cells expressing CCR5 receptor. Virology 252(1): 210-217, 1998

Differential activation of the c-Jun N-terminal kinase/stress-activated protein kinase and p38 mitogen-activated protein kinase signal transduction pathways in the mouse brain upon infection with neurovirulent influenza A virus. Journal of General Virology 84(Pt 9): 2401-2408, 2003

The respiratory syncytial virus small hydrophobic protein is phosphorylated via a mitogen-activated protein kinase p38-dependent tyrosine kinase activity during virus infection. Journal of General Virology 86(Pt 2): 375-384, 2005

Receptor for activated C kinase (RACK) and protein kinase C (PKC) in egg activation. Theriogenology 75(1): 80-89, 2011

The phosphoprotein of rabies virus is phosphorylated by a unique cellular protein kinase and specific isomers of protein kinase C. Journal of Virology 74(1): 91-98, 2000

Hematopoietic progenitor kinase 1, mitogen-activated protein/extracellular signal-related protein kinase kinase kinase 1, and phosphomitogen-activated protein kinase kinase 4 are overexpressed in extramammary Paget disease. American Journal of Dermatopathology 33(7): 681-686, 2011

Role of interleukin (IL)-2 receptor beta-chain subdomains and Shc in p38 mitogen-activated protein (MAP) kinase and p54 MAP kinase (stress-activated protein Kinase/c-Jun N-terminal kinase) activation. IL-2-driven proliferation is independent of p38 and p54 MAP kinase activation. Journal of Biological Chemistry 274(11): 7591-7597, 1999

The cellular inhibitor of the PKR protein kinase, P58(IPK), is an influenza virus-activated co-chaperone that modulates heat shock protein 70 activity. Journal of Biological Chemistry 274(6): 3797-3803, 1999

Protein kinase R (PKR) interacts with and activates mitogen-activated protein kinase kinase 6 (MKK6) in response to double-stranded RNA stimulation. Journal of Biological Chemistry 279(36): 37670-37676, 2004

Direct activation of the stress-activated protein kinase (SAPK) and extracellular signal-regulated protein kinase (ERK) pathways by an inducible mitogen-activated protein Kinase/ERK kinase kinase 3 (MEKK) derivative. Journal of Biological Chemistry 272(5): 2668-2674, 1997

The function of MAP-kinase activated protein kinases in influenza A virus infection ”Linking MAPK signalling to protein kinase R inhibition. 2008