Comparison of the airborne survival of calf rotavirus and poliovirus type 1 (Sabin) aerosolized as a mixture

Ijaz, M.K.; Sattar, S.A.; Johnson-Lussenburg, C.M.; Springthorpe, V.S.

Applied and Environmental Microbiology 49(2): 289-293

1985


ISSN/ISBN: 0099-2240
PMID: 2984990
Accession: 005013020

Download citation:  
Text
  |  
BibTeX
  |  
RIS

Article/Abstract emailed within 1 workday
Payments are secure & encrypted
Powered by Stripe
Powered by PayPal

Abstract
A mixture of a cell culture-adapted strain (C-486) of calf rotavirus and poliovirus type 1 (Sabin) was prepared in tryptose phosphate broth containing 0.1% uranine (physical tracer) and antifoam at a final concentration of 0.001%. By using a six-jet Collison nebulizer, the mixture was aerosolized into a 300-liter stainless-steel rotating (4 rpm) drum. The temperature of the air inside the drum was kept at 20 +/- 1 degrees C, and the virus aerosols were held at the following three levels of relative humidity (RH): low (30 +/- 5%), medium (50 +/- 5%), and high (80 +/- 5%). An all-glass impinger, containing 10.0 ml of tryptose phosphate broth with antifoam, was used to collect samples of air from the drum. Both viruses were propagated and quantitated in MA-104 cells. The calf rotavirus was found to survive well at mid-range RH, where 60% of the infectious virus could be detected even after 24 h of virus aerosolization. At the low RH, the half-life of the infectious rotavirus was ca. 14 h. On the other hand, no infectious poliovirus could be recovered from the drum air at the low and medium RH. At the high RH, more than 50% of the infectious rotavirus became undetectable within 90 min of aerosolization. In contrast to this, the half-life of the poliovirus at the high RH was about 10 h. These data, based on the aerosolization of virus mixtures, therefore suggest that there is a pronounced difference in the way RH influences the airborne survival of these two types of viruses held under identical experimental conditions.