Home
  >  
Section 6
  >  
Chapter 5,529

Glutamine metabolism in isolated perfused rat liver. the transamination pathway

Häussinger, D.; Stehle, T.; Gerok, W.

Biological Chemistry Hoppe-Seyler 366(6): 527-536

1985


ISSN/ISBN: 0177-3593
PMID: 2862885
DOI: 10.1515/bchm3.1985.366.1.527
Accession: 005528926

Download citation:  
Text
  |  
BibTeX
  |  
RIS

In isolated perfused rat liver, added 4-methyl-thio-2-oxobutyrate and phenylpyruvate are rapidly transaminated to the corresponding amino acids with glutamine, the latter being supplied via the portal vein or by endogenous synthesis. With portal glutamine concentrations below 5mM and in the presence of a oxo-acid acceptor, the flux through glutamine transaminases exceeded the ammonium ion-stimulated glutaminase flux. 4-Methylthio-2-oxobutyrate-induced extra glutamine uptake was not dependent on the perfusate pH in the range of pH 7 to 8. During glutamine/4-methylthio-2-oxobutyrate transamination, the amide nitrogen of glutamine is fully recovered as glutamate, ammonia, urea and alanine. Oxoglutarate formed by omega-amidase activity is released as glutamate or oxidized by oxoglutarate dehydrogenase. alpha-Cyanocinnamate, the inhibitor of the monocarboxylate translocator in the mitochondrial membrane inhibited 4-methylthio-2-oxobutyrate-induced glutamine uptake and methionine release by about 30%. This might indicate that about 2/3 of glutamine transaminase flux is cytosolic. alpha-Cyanocinnamate inhibited 4-methylthio-2-oxobutyrate-induced glutamate efflux by about 90%. Stimulation of flux through glutamine transaminases is accompanied by a 70-80% inhibition of glutaminase flux. This is not explained by a direct inhibition of glutaminase by 4-methylthio-2-oxobutyrate but by a substrate competition between glutaminase and glutamine transaminases. 4-Methylthio-2-oxobutyrate decreases glutamine release by the liver due to withdrawal by transamination. The oxo acid itself is without effect on glutamine synthetase flux. With respect to hepatocyte heterogeneity there is no evidence for a zonal distribution of glutamine transaminase activities, as it has been shown for glutamine synthetase and glutaminase activities.

PDF emailed within 0-6 h: $19.90