Alterations in cell surface galactosyltransferase activity during limb chondrogenesis in brachypod mutant mouse embryos

Elmer, W.A.; Pennybacker, M.F.; Knudsen, T.B.; Kwasigroch, T.E.

Teratology 38(5): 475-484

1988


ISSN/ISBN: 0040-3709
PMID: 3149040
DOI: 10.1002/tera.1420380511
Accession: 007000093

Download citation:  
Text
  |  
BibTeX
  |  
RIS

Article/Abstract emailed within 0-6 h
Payments are secure & encrypted
Powered by Stripe
Powered by PayPal

Abstract
The autosomal mutation brachypod (bpH/bpH) in the mouse affects the development of precartilage mesenchymal condensation in the limb-bud. We have previously shown that this defect is localized to the expression of terminal N-acetylglucosamine (GlcNAc) glycoproteins in the plasma membrane (Elmer and Wright, '83). The present study is focused on cell surface galactosyltransferase (GalTase), an ectoenzyme that transfers galactose to its GlcNAc substrate. Purified plasma membrane preparations derived from wild-type (+/+), heterozygote (+/bpH) and brachypod (bpH/bpH) embryonic mouse limb cells were assayed for GalTase activity during in vitro and in utero chondrogenesis using High-Performance Liquid Chromatography (HPLC). On embryonic day E12, prior to overt expression of the mutant gene, no significant difference in GalTase activity was observed. By the third day in culture, all major chondrogenic elements of the autopod were present in +/+ and +/bpH embryos, whereas the mutant autopods were markedly deficient in staining and appeared consistently shorter. The accumulation of alcianophilic cartilage matrix in the wild-type was accompanied by a 29% increase in GalTase activity, which reflected the net change (29%) observed during development from days E12 to E13 in utero. The GalTase activity for the in utero E13 mutant (13%) was significantly different from control. In culture, day E12 mutant autopods actually decreased in their GalTase level by 3 days so that the activity was reduced to only 57% of the wild-type. Though GalTase activity in the heterozygote showed an intermediate expression, optical image analysis did not reveal consistent differences in cartilage development when compared to +/+, arguing against a gene-dosage effect at the gross anatomical level. These data indicate that an increase in plasma membrane GalTase activity is a natural developmental event that occurs during limb-bud chondrogenesis and a decrease in GalTase activity contributes to the dysmorphogenesis in brachypod limb-buds.

Alterations in cell surface galactosyltransferase activity during limb chondrogenesis in brachypod mutant mouse embryos