Contractile responses and signal transduction of endothelin-1 in aorta and mesenteric vasculature of adult spontaneously hypertensive rats

Nguyen, P.V.; Yang, X.P.; Li, G.; Deng, L.Y.; Flückiger, J.P.; Schiffrin, E.L.

Canadian Journal of Physiology and Pharmacology 71(7): 473-483

1993


ISSN/ISBN: 0008-4212
PMID: 8242481
DOI: 10.1139/y93-069
Accession: 008382373

Download citation:  
Text
  |  
BibTeX
  |  
RIS

Article/Abstract emailed within 0-6 h
Payments are secure & encrypted
Powered by Stripe
Powered by PayPal

Abstract
The contractile responses and generation of intracellular second messengers in response to endothelin-1 (ET-1), a potent vasoconstrictor peptide released locally by endothelial cells and involved in the regulation of vascular tone, were investigated in different segments of the vascular tree of adult 18-week-old spontaneously hypertensive rats (SHR) as compared with age-matched Wistar-Kyoto (WKY) rats. Aorta rings of SHR showed lower maximum response to ET-1 in comparison with WKY rats. Rings of the main superior mesenteric artery of SHR and WKY showed similar responses to ET-1. Small mesenteric resistance arteries of SHR, mounted on a wire myograph, developed similar tension to those of WKY rats in response to ET-1. The dose-response of inositol phosphates to ET-1 was significantly blunted in thoracic aorta of SHR compared with WKY rats, whereas it was similar in the mesenteric arterial bed. Baseline 1,2-diacylglycerol content was higher in thoracic aorta of SHR than WKY, while it was similar in the mesenteric arterial bed of the two strains. The response of 1,2-diacylglycerol to ET-1 was blunted in aorta of SHR, whereas no significant differences in diacylglycerol accumulation could be found in mesenteric vessels between SHR and WKY. In small mesenteric arteries, the dose-response to ET-1 of cytosolic free calcium, measured with the fluorescent dye Fura 2-AM, was similar in the two groups of rats. We conclude that in the aorta of 18-week-old SHR there is reduced generation of second messengers (inositol phosphates and diacylglycerol), which underlies its decreased response to ET-1. In mesenteric vessels (both proximal and distal) signal transduction is similar in SHR and WKY, and as a result contractile responses in both species are comparable. The responses to ET-1 of the arterial tree in terms of contractility and second messenger generation may reflect the adaptive processes taking place as a consequence of elevated blood pressure within the arterial wall of different segments of the vasculature of SHR.