Section 9
Chapter 8,407

Cyclic AMP-increasing agents interfere with chemoattractant-induced respiratory burst in neutrophils as a result of the inhibition of phosphatidylinositol 3-kinase rather than receptor-operated Ca2+ influx

Ahmed, M.U.; Hazeki, K.; Hazeki, O.; Katada, T.; Ui, M.

Journal of Biological Chemistry 270(40): 23816-23822


ISSN/ISBN: 0021-9258
PMID: 7559558
DOI: 10.1074/jbc.270.40.23816
Accession: 008406443

Download citation:  

Superoxide anion and arachidonic acid were produced in guinea pig neutrophils in response to a chemotactic peptide formyl-methionyl-leucyl-phenylalanine (fMLP). Both responses were markedly, but the former response to a phorbol ester was not at all, inhibited when the cellular cAMP level was raised by prostaglandin E1 combined with a cAMP phosphodiesterase inhibitor. Increasing cAMP was also inhibitory to fMLP-induced activation of phosphatidylinositol (PI) 3-kinase and Ca2+ influx without any effect on the cation mobilization from intracellular stores. The fMLP-induced respiratory burst was abolished when PI 3-kinase was inhibited by wortmannin or LY294002, but was not affected when Ca2+ influx was inhibited. On the contrary, fMLP released arachidonic acid from the cells treated with the PI 3-kinase inhibitors as well as from non-treated cells, but it did not so when cellular Ca2+ uptake was prevented. The chemotactic peptide activated PI 3-kinase even in cells in which the receptor-mediated intracellular Ca2+ mobilization and respiratory burst were both abolished by exposure of the cells to a permeable Ca(2+)-chelating agent. Thus, stimulation of fMLP receptors gave rise to dual effects, activation of PI 3-kinase and intracellular Ca2+ mobilization; both effects were necessary for the fMLP-induced respiratory burst. Increasing cellular cAMP inhibited the respiratory burst and arachidonic acid release as a result of the inhibitions of PI 3-kinase and Ca2+ influx, respectively, in fMLP-treated neutrophils.

Full Text Article emailed within 0-6 h: $19.90