Decrease in Activity of Glutathione Reductase Enhances Paraquat Sensitivity in Transgenic Nicotiana tabacum
Aono, M..; Saji, H..; Fujiyama, K..; Sugita, M..; Kondo, N..; Tanaka, K..
Plant Physiology 107(2): 645-648
1995
ISSN/ISBN: 0032-0889 PMID: 12228389 DOI: 10.2307/4276363
Accession: 008421119
Transgenic tobacco (Nicotiana tabacum L. cv SR1) with decreased activity of glutathione reductase exhibited enhanced sensitivity to paraquat in the light as evaluated by chlorophyll destruction and electrolyte leakage from leaf discs. This result indicates the involvement of glutathione reductase in the tolerance of plants to photooxidative stress caused by the herbicide.
Full Text Article emailed within 0-6 h: $19.90
Related References
Aono, M.; Saji, H.; Sakamoto, A.; Tanaka, K.; Kondo, N.; Tanaka, K. 1995: Paraquat tolerance of transgenic Nicotiana tabacum with enhanced activities of glutathione reductase and superoxide dismutase Plant and Cell Physiology 36(8): 1687-1691Aono, M.; Kubo, A.; Saji, H.; Tanaka, K.; Kondo, N. 1993: Enhanced tolerance to photooxidative stress of transgenic Nicotiana tabacum with high chloroplastic glutathione reductase activity Plant and Cell Physiology 34(1): 129-135
Saji, H.; Aono, M.; Kubo, A.; Tanaka, K.; Kondo, N. 1997: Paraquat sensitivity of transgenic Nicotiana tabacum plants that overproduce a cytosolic ascorbate peroxidase Phyton 37(3 Special Edition): 259-264
Tanaka, K.; Aono, M.; Saji, H.; Kubo, A. 1996: Stress tolerance of transgenic Nicotiana tabacum with enhanced activities of glutathione reductase and superoxide dismutase Biochemical Society Transactions 24(2): 200s
Dixit, P.; Mukherjee, P.K.; Ramachandran, V.; Eapen, S. 2011: Glutathione transferase from Trichoderma virens enhances cadmium tolerance without enhancing its accumulation in transgenic Nicotiana tabacum Plos one 6(1): E16360
Aono, M.; Kubo, A.; Saji, H.; Natori, T.; Tanaka, K.; Kondo, N. 1991: Resistance to active oxygen toxicity of transgenic nicotiana tabacum that expresses the gene for glutathione reductase from escherichia coli Plant and Cell Physiology 32(5): 691-698
Aono, M.; Saji, H.; Kondo, N.; Tanaka, K. 1997: Paraquat tolerance of transgenic tobacco plants with altered activity of glutathione reductase Phyton 37(3 Special Edition): 13-18
Ding, S.; Lu, Q.; Zhang, Y.; Yang, Z.; Wen, X.; Zhang, L.; Lu, C. 2009: Enhanced sensitivity to oxidative stress in transgenic tobacco plants with decreased glutathione reductase activity leads to a decrease in ascorbate pool and ascorbate redox state Plant Molecular Biology 69(5): 577-592
Eltayeb, A.; Kawano, N.; Badawi, G.; Kaminaka, H.; Inanaga, S.; Tanaka, K. 2006: Enhancement of oxidative stress tolerance in transgenic tobacco plants (Nicotiana tabacum) overexpressing either monodehydroascorbate reductase or dehydroascorbate reductase Plant and Cell Physiology 47: S234-S234
Palakarcheva, M.; Edreva, A.; Cholakova, N. 1980: Study of the back-crossing effect of Nicotiana tabacum in hybrids obtained with the amphidiploids Nicotiana tabacum L. x Nicotiana debneyi D. (2n=96) and Nicotiana goodspeedii W. x Nicotiana tabacum L. (2n=88) Doklady Bolgarskoi akademii nauk = Comptes rendus de l'Academie bulgare des sciences 3(10): 1417-1420
Berbec, A. 1987: Chromosome pairing and pollen fertility in the interspecific f 1 hybrids nicotiana tabacum l. x nicotiana benavidesii goodspeed nicotiana knightiana goodspeed x nicotiana tabacum and nicotiana raimondii macbride x nicotiana tabacum Genetica Polonica 28(3): 263-270
WangYanXiu; ZhangJinWen; WuLuGuang 2010: Cloning and construction of plant expression vector of dihydroflavonol reductase gene and transgenic Nicotiana tabacum Acta Botanica Boreali Occidentalia Sinica: 1, 1-7
Burke, J.J.; Gamble, P.E.; Hatfield, J.L.; Quisenberry, J.E. 1985: Plant morphological and biochemical responses to field water deficits: I. Responses of glutathione reductase activity and paraquat sensitivity Plant Physiology 79(2): 415-419
Mzid, R.; Zorrig, W.; Ben Ayed, R.; Ben Hamed, K.; Ayadi, M.; Damak, Y.; Lauvergeat, V.; Hanana, M. 2018: The grapevine VvWRKY2 gene enhances salt and osmotic stress tolerance in transgenic Nicotiana tabacum 3 Biotech 8(6): 277
Furusawa, I.; Tanaka, K.; Thanutong, P.; Mizuguchi, A.; Yazaki, M.; Asada, K. 1984: Paraquat resistant tobacco nicotiana tabacum calluses with enhanced superoxide dismutase activity Plant and Cell Physiology 25(7): 1247-1254
Reed, S.M.; Collins, G.B. 1978: Interspecific hybrids in nicotiana through in vitro culture of fertilized ovules nicotiana stocktonii x nicotiana tabacum sexual hybrid nicotiana nesophila x nicotiana tabacum sexual hybrid nicotiana repanda x nicotiana tabacum sexual hybrid Journal of Heredity 69(5): 311-315
Dek, M.S.P.; Padmanabhan, P.; Sherif, S.; Subramanian, J.; Paliyath, A.G. 2017: Upregulation of Phosphatidylinositol 3-Kinase (PI3K) Enhances Ethylene Biosynthesis and Accelerates Flower Senescence in Transgenic Nicotiana tabacum L International Journal of Molecular Sciences 18(7)
Xu, G.; Zheng, Q.; Wei, P.; Zhang, J.; Liu, P.; Zhang, H.; Zhai, N.; Li, X.; Xu, X.; Chen, Q.; Cao, P.; Zhao, J.; Zhou, H. 2023: Metabolic engineering of a 1,8-cineole synthase enhances aphid repellence and increases trichome density in transgenic tobacco (Nicotiana tabacum L.) Pest Management Science 2023
Lucchesi, A.A.; Zambon, S.; Montagnoli, A.C. 1984: Efeitos do ácido 2-cloroetilfosfônico na maturação de folhas em cultura de fumo (Nicotiana tabacum L.) - Effet de l'acide 2-chloroéthylphosphonique sur la maturation des feuilles de tabac (Nicotiana tabacum L.) - Effects of (2-chloroethyl) phosphonic acid on leaf maturity of tobacco plants (Nicotiana tabacum L.) Anais da Escola Superior de Agricultura Luiz de Queiroz 41(1): 203-220
Tsikova, E. 1969: Cytological investigations of cytoplasmic male sterility in nicotiana d part 2 bc 1 tetra ploid nicotiana debneyi d nicotiana tabacum d nicotiana tabacum d Genetika i Selektsiya 2(2): 125-130