Endothelinb receptor agonists produce pulmonary vasodilation in intact newborn lambs with pulmonary hypertension

Wong, J.; Vanderford, P.A.; Winters, J.; Soifer, S.J.; Fineman, J.R.

Journal of Cardiovascular Pharmacology 25(2): 207-215

1995


ISSN/ISBN: 0160-2446
PMID: 7752646
DOI: 10.1097/00005344-199502000-00005
Accession: 008605332

Download citation:  
Text
  |  
BibTeX
  |  
RIS

Article/Abstract emailed within 0-6 h
Payments are secure & encrypted
Powered by Stripe
Powered by PayPal

Abstract
The hemodynamic effects of endothelin-1 (ET-1) are mediated by at least two distinct receptors: ETa and ETb receptors. Recently, ETb receptor agonists (4 Ala ET-1 and IRL 1620) were developed. To investigate the role of ETb receptor activation on the pulmonary and systemic circulations, we studied the hemodynamic effects of intrapulmonary arterial injections of these receptor agonists in 10 intact newborn lambs. At rest, 4 Ala ET-1 (290-1,725 ng/kg) changed no hemodynamic variables. IRL 1620 (180-1,095 ng/kg) decreased mean pulmonary arterial pressure (PAP, 16.8% +/- 15.0 and 17.8% +/- 8.5, p < 0.05) and left pulmonary artery blood flow (21.6% +/- 22.1 and 33.4% +/- 27.7, p < 0.05) at the two highest doses only. During U46619-induced pulmonary hypertension, both 4 Ala ET-1 (3.2% +/- 8.0 to 15.9% +/- 6.4, p < 0.05) and IRL 1620 (8.7% +/- 6.3 to 21.9% +/- 4.1, p < 0.05) produced selective dose-dependent decreases in PAP. The decrease in mean PAP induced by 4 Ala ET-1 and IRL 1620 was attenuated by N omega-nitro-L-arginine [an inhibitor of endothelium-derived nitric oxide (EDNO) synthesis] (16.6% +/- 3.5 vs. 5.9% +/- 2.3 and 16.2% +/- 3.4 vs. 6.6% +/- 2.8, p < 0.05) and by glybenclamide (a blocker of ATP-dependent potassium channels) (18.2% +/- 7.9 vs. 7.5% +/- 8.3 and 14.7% +/- 3.6 vs. 6.3% +/- 3.2, p < 0.05). ETb receptor activation produces selective pulmonary vasodilation during pulmonary hypertension in intact newborn lambs. The vasodilating properties are mediated in part by release of ENDO and by potassium channel activation.