Section 10
Chapter 9,986

Structural Analysis of the Rate-limiting Transition States in the Folding of Im7 and Im9: Similarities and Differences in the Folding of Homologous Proteins

Friel, C.T.; Capaldi, A.P.; Radford, S.E.

Journal of Molecular Biology 326(1): 293-305


ISSN/ISBN: 0022-2836
PMID: 12547210
DOI: 10.1016/s0022-2836(02)01249-4
Accession: 009985292

Download citation:  

The bacterial immunity proteins Im7 and Im9 fold with mechanisms of different kinetic complexity. Whilst Im9 folds in a two-state transition at pH 7.0 and 10 [degree]C, Im7 populates an on-pathway intermediate under these conditions. In order to assess the role of sequence versus topology in the folding of these proteins, and to analyse the effect of populating an intermediate on the landscape for folding, we have determined the conformational properties of the rate-limiting transition state for Im9 folding/unfolding using FF-value analysis and have compared the results with similar data obtained previously for Im7. The data show that the rate-limiting transition states for Im9 and Im7 folding/unfolding are similar: both are compact (bT = 0.94 and 0.89, respectively) and contain three of the four native helices docked around a specific hydrophobic core. Significant differences are observed, however, in the magnitude of the FF-values obtained for the two proteins. Of the 20 residues studied in both proteins, ten have FF-values in Im7 that exceed those in Im9 by more than 0.2, and of these five differ by more than 0.4. The data suggest that the population of an intermediate in Im7 results in folding via a transition state ensemble that is conformationally restricted relative to that of Im9. The data are consistent with the view that topology is an important determinant of folding. Importantly, however, they also demonstrate that while the folding transition state may be conserved in homologous proteins that fold with two and three-state kinetics, the population of an intermediate can have a significant effect on the breadth of the transition state ensemble. Reprinted by permission of the publisher.

PDF emailed within 0-6 h: $19.90