+ Site Statistics
References:
52,654,530
Abstracts:
29,560,856
PMIDs:
28,072,755
+ Search Articles
+ Subscribe to Site Feeds
Most Shared
PDF Full Text
+ PDF Full Text
Request PDF Full Text
+ Follow Us
Follow on Facebook
Follow on Twitter
Follow on LinkedIn

+ Translate
+ Recently Requested

Activity of rifapentine and its metabolite 25-O-desacetylrifapentine compared with rifampicin and rifabutin against Mycobacterium tuberculosis, Mycobacterium africanum, Mycobacterium bovis and M. bovis BCG



Activity of rifapentine and its metabolite 25-O-desacetylrifapentine compared with rifampicin and rifabutin against Mycobacterium tuberculosis, Mycobacterium africanum, Mycobacterium bovis and M. bovis BCG



Journal of Antimicrobial ChemoTherapy 46(4): 565-570



The in vitro activity of rifapentine and its metabolite, 25-O:-desacetylrifapentine, as compared with that of rifampicin and rifabutin, was determined against Mycobacterium tuberculosis, Mycobacterium africanum, Mycobacterium bovis and M. bovis BCG. MICs were determined radiometrically and by the 1% proportional method using Middlebrook 7H11 agar. The bactericidal effect of the drugs was determined in parallel at selected concentrations. For drugsusceptible isolates of M. tuberculosis, the Bactec MICs of rifapentine and 25-O:-desacetylrifapentine were 0.03-0.06 mg/L and 0. 125-0.25 mg/L, respectively. Similar MICs were obtained for M. africanum (0.03-0.125 and 0.125-0.50 mg/L, respectively), and M. bovis (0.063-0.25 and 0.125-1.0 mg/L, respectively), but MICs were considerably lower for M. bovis BCG (0.008-0.063 mg/L for rifapentine and 0.016-0.125 mg/L for its metabolite). In general, MICs determined using 7H11 agar medium were usually one or two dilutions higher than those obtained using Bactec broth. When compared with rifampicin and rifabutin, the inhibitory activity of rifapentine for drug-susceptible isolates was roughly equal to that of rifabutin, and the inhibitory activity of 25-O:-desacetylrifapentine was comparable to that of rifampicin; however, rifapentine was somewhat more bactericidal than rifabutin at equal concentrations. Clinical isolates of M. tuberculosis with a high degree of resistance to rifampicin (MIC >/= 32 mg/L) were also highly resistant to rifabutin, rifapentine and 25-O:-desacetylrifapentine, although the MICs of rifabutin in this case were somewhat lower than the MICs of rifapentine.

(PDF emailed within 0-6 h: $19.90)

Accession: 010123823

Download citation: RISBibTeXText

PMID: 11020253

DOI: 10.1093/jac/46.4.565


Related references

Deoxyribonucleic acid relatedness among selected strains of Mycobacterium tuberculosis, Mycobacterium bovis, Mycobacterium bovis BCG, Mycobacterium microti, and Mycobacterium africanum. International Journal of Systematic Bacteriology 35(2): 147-150, 1985

Phylogenomic analysis of the species of the Mycobacterium tuberculosis complex demonstrates that Mycobacterium africanum, Mycobacterium bovis, Mycobacterium caprae, Mycobacterium microti and Mycobacterium pinnipedii are later heterotypic synonyms of Mycobacterium tuberculosis. International Journal of Systematic and Evolutionary Microbiology: -, 2017

Dna relatedness among selected strains of mycobacterium tuberculosis mycobacterium bovis mycobacterium bovis bcg mycobacterium microti and mycobacterium africanum. International Journal of Systematic Bacteriology 35(2): 147-150, 1985

In vitro susceptibility of Mycobacterium tuberculosis, Mycobacterium africanum, Mycobacterium bovis, Mycobacterium avium, Mycobacterium fortuitum, and Mycobacterium chelonae to ticarcillin in combination with clavulanic acid. Antimicrobial Agents and ChemoTherapy 31(1): 132-133, 1987

Comparison of mycobacterium africanum mycobacterium tuberculosis and mycobacterium bovis by their utilization of carbon and nitrogen sources. Annales de la Societe Belge de Medecine Tropicale 55(6): 647-651, 1975

Mycobactins and exochelins of mycobacterium tuberculosis mycobacterium bovis mycobacterium africanum and other related species. Journal of General Microbiology 134(3): 771-776, 1988

Genes for immunodominant protein antigens are highly homologous in Mycobacterium tuberculosis, Mycobacterium africanum, and the vaccine strain Mycobacterium bovis BCG. Infection and Immunity 55(10): 2378-2382, 1987

Infections with mycobacterium avium human mycobacterium bovis mycobacterium tuberculosis mycobacterium kansasii mycobacterium intracellulare mycobacterium xenopei. Lancet (7558): 36, 1968

Taxonomic studies on mycobacteria on the basis of their antigenic structure mycobacterium bovis mycobacterium kansasii mycobacterium avium mycobacterium balnei mycobacterium simiae new species mycobacterium phlei mycobacterium smegnatis mycobacterium fortuitum. Acta Microbiologica Academiae Scientiarum Hungaricae 15(1): 69-76, 1968

Catalase-peroxidase of Mycobacterium bovis BCG converts isoniazid to isonicotinamide, but not to isonicotinic acid: differentiation parameter between enzymes of Mycobacterium bovis BCG and Mycobacterium tuberculosis. Biochimica et Biophysica Acta 1760(5): 724-729, 2006

Resistance system of Mycobacterium bovis B.C.B. to aminoglycoside- and peptide-antibiotics. Comparison of resistant phenotypes between Mycobacterium tuberculosis and Mycobacterium bovis. Microbiology and Immunology 24(1): 11-19, 1980

Thin layer chromatography systems for the identification of mycobacterium tuberculosis mycobacterium bovis bcg mycobacterium kansasii mycobacterium gastri and mycobacterium marinum. Research in Microbiology 143(5): 519-524, 1992

Separation of Mycobacterium bovis BCG from Mycobacterium tuberculosis and Mycobacterium bovis by using high-performance liquid chromatography of mycolic acids. Journal of Clinical Microbiology 30(5): 1327-1330, 1992

Monoclonal antibodies for the rapid differentiation of mycobacterium tuberculosis from mycobacterium bovis mycobacterium avium mycobacterium kansasii and mycobacterium xenopi. Abstracts of the Annual Meeting of the American Society for Microbiology 88: 139, 1988

Evidence for occurrence of the ESAT-6 protein in Mycobacterium tuberculosis and virulent Mycobacterium bovis and for its absence in Mycobacterium bovis BCG. Infection and Immunity 64(1): 16-22, 1996