+ Site Statistics
+ Search Articles
+ PDF Full Text Service
How our service works
Request PDF Full Text
+ Follow Us
Follow on Facebook
Follow on Twitter
Follow on LinkedIn
+ Subscribe to Site Feeds
Most Shared
PDF Full Text
+ Translate
+ Recently Requested

Akt-dependent phosphorylation of serine 1179 and mitogen-activated protein kinase kinase/extracellular signal-regulated kinase 1/2 cooperatively mediate activation of the endothelial nitric-oxide synthase by hydrogen peroxide



Akt-dependent phosphorylation of serine 1179 and mitogen-activated protein kinase kinase/extracellular signal-regulated kinase 1/2 cooperatively mediate activation of the endothelial nitric-oxide synthase by hydrogen peroxide



Molecular Pharmacology 63(2): 325-331



Hydrogen peroxide mediates vasodilation, but the mechanisms responsible for this process remain undefined. We examined the effect of H(2)O(2) on nitric oxide (NO*) production and the signaling events involved. NO* release from bovine aortic endothelial cells was detected with an NO*-specific microelectrode. The addition of H(2)O(2) caused a potent dose-dependent increase in NO* production. This was partially Ca(2+)-dependent because BAPTA/AM reduced NO* production at low (<50 microM) but not high (>100 microM) concentrations of H(2)O(2). Phosphatidylinositol (PI) 3-kinase inhibition [with wortmannin or 2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride], infection with a dominant-negative mutant of Akt, or mitogen-activated protein kinase kinase/extracellular signal-regulated kinase 1/2 (MEK/ERK1/2) inhibition (with PD98059 or U0126) partially attenuated, whereas inhibition of both PI 3-kinase and MEK1/2 abolished H(2)O(2)-dependent NO* production. ERK1/2 seemed necessary for NO* production early (<5 min) after H(2)O(2) addition, whereas PI 3-kinase/Akt was more important at later time points. Phosphorylation of endothelial nitric-oxide synthase (eNOS) at serine 1179 was observed >10 min after the addition of H(2)O(2), and this was prevented by wortmannin but not by PD98059. c-Src family tyrosine kinase(s) was found to be upstream of H(2)O(2)-dependent Akt and eNOS serine 1179 phosphorylation and subsequent NO* production. In summary, H(2)O(2) causes endothelial NO* release mediated by cooperative effects between PI 3-kinase/Akt-dependent eNOS serine 1179 phosphorylation and activation of MEK/ERK1/2. This may represent an acute cellular adaptation to an increase in oxidant stress.

Please choose payment method:






(PDF emailed within 0-6 h: $19.90)

Accession: 010141568

Download citation: RISBibTeXText

PMID: 12527803

DOI: 10.1124/mol.63.2.325


Related references

Activation of the mitogen activated protein kinase extracellular signal-regulated kinase 1 and 2 by the nitric oxide-cGMP-cGMP-dependent protein kinase axis regulates the expression of matrix metalloproteinase 13 in vascular endothelial cells. Molecular Pharmacology 62(4): 927-935, 2002

C-Jun N-terminal kinase binding domain-dependent phosphorylation of mitogen-activated protein kinase kinase 4 and mitogen-activated protein kinase kinase 7 and balancing cross-talk between c-Jun N-terminal kinase and extracellular signal-regulated kinase pathways in cortical neurons. Neuroscience 159(1): 94, 2009

Cyclooxygenase, p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase MAPK, Rho kinase, and Src mediate hydrogen peroxide-induced contraction of rat thoracic aorta and vena cava. Journal of Pharmacology and Experimental Therapeutics 320(1): 236-243, 2007

E6201, a novel kinase inhibitor of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase-1 and mitogen-activated protein kinase/extracellular signal-regulated kinase kinase kinase-1: in vivo effects on cutaneous inflammatory responses by topical administration. Journal of Pharmacology and Experimental Therapeutics 335(1): 23-31, 2010

Synergistic activation by Ras and 14-3-3 protein of a mitogen-activated protein kinase kinase kinase named Ras-dependent extracellular signal-regulated kinase kinase stimulator. Journal of Biological Chemistry 269(37): 22917-22920, 1994

Activation of p38 mitogen-activated protein kinase (p38 MAPK), extracellular signal-regulated kinase (ERK) and c-jun N-terminal kinase (JNK) during hypoxia in cerebral cortical nuclei of guinea pig fetus at term: role of nitric oxide. Neuroscience Letters 439(1): 94-99, 2008

Aurintricarboxylic Acid Protects against Cell Death Caused by Lipopolysaccharide in Macrophages by Decreasing Inducible Nitric-Oxide Synthase Induction via Ikappa B Kinase, Extracellular Signal-Regulated Kinase, and p38 Mitogen-Activated Protein Kinase Inhibition. Molecular Pharmacology 62(1): 90-101, 2002

Aurintricarboxylic acid protects against cell death caused by lipopolysaccharide in macrophages by decreasing inducible nitric-oxide synthase induction via IkappaB kinase, extracellular signal-regulated kinase, and p38 mitogen-activated protein kinase inhibition. Molecular Pharmacology 62(1): 90, 2002

Role of nongenomic activation of phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase/extracellular signal-regulated kinase kinase/extracellular signal-regulated kinase 1/2 pathways in 1,25D3-mediated apoptosis in squamous cell carcinoma cells. Cancer Research 66(16): 8131-8138, 2006

Arsenite-induced phosphorylation of histone H3 at serine 10 is mediated by Akt1, extracellular signal-regulated kinase 2, and p90 ribosomal S6 kinase 2 but not mitogen- and stress-activated protein kinase 1. Journal of Biological Chemistry 278(12): 10588-10593, 2003

Phosphorylation and activation of mitogen- and stress-activated protein kinase-1 in adult rat cardiac myocytes by G-protein-coupled receptor agonists requires both extracellular-signal-regulated kinase and p38 mitogen-activated protein kinase. Biochemical Journal 365(Pt 3): 757-763, 2002

Glycogen Synthase Kinase 3b Is a Natural Activator of Mitogen-activated Protein Kinase/Extracellular Signal-regulated Kinase Kinase Kinase 1 (MEKK1). The Journal of Biological Chemistry 278(16): 995-4001, 2003

Glycogen synthase kinase 3 beta is a natural activator of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase kinase 1 (MEKK1). Journal of Biological Chemistry 278(16): 13995-14001, 2003

Early activation of mitogen-activated protein kinase kinase, extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, and c-Jun N-terminal kinase in response to binding of simian immunodeficiency virus to Jurkat T cells expressing CCR5 receptor. Virology 252(1): 210-217, 1998

Zinc stimulates tau S214 phosphorylation by the activation of Raf/mitogen-activated protein kinase-kinase/extracellular signal-regulated kinase pathway. Neuroreport 22(16): 839-844, 2011