+ Site Statistics
+ Search Articles
+ PDF Full Text Service
How our service works
Request PDF Full Text
+ Follow Us
Follow on Facebook
Follow on Twitter
Follow on LinkedIn
+ Subscribe to Site Feeds
Most Shared
PDF Full Text
+ Translate
+ Recently Requested

Binding of ATP to the fructose-2,6-bisphosphatase domain of chicken liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase leads to activation of its 6-phosphofructo-2-kinase



Binding of ATP to the fructose-2,6-bisphosphatase domain of chicken liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase leads to activation of its 6-phosphofructo-2-kinase



Journal of Biological Chemistry 276(27): 24608-24613



To understand the mechanism by which the activity of the 6-phosphofructo-2-kinase (6PF-2K) of chicken liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase is stimulated by its substrate ATP, we studied two mutants of the enzyme. Mutation of either Arg-279, the penultimate basic residue within the Walker A nucleotide-binding fold in the bisphosphatase domain, or Arg-359 to Ala eliminated the activation of the chicken 6PF-2K by ATP. Binding analysis by fluorescence spectroscopy using 2'(3')-O-(N-methylanthraniloyl)-ATP revealed that the kinase domains of these two mutants, unlike that of the wild type enzyme, showed no cooperativity in ATP binding and that the mutant enzymes possess only the high affinity ATP binding site, suggesting that the ATP binding site on the bisphosphatase domain represents the low affinity site. This conclusion was supported by the result that the affinity of ATP for the isolated bisphosphatase domain is similar to that for the low affinity site in the wild type enzyme. In addition, we found that the 6PF-2K of a chimeric enzyme, in which the last 25 residues of chicken enzyme were replaced with those of the rat enzyme, could not be activated by ATP, despite the fact that the ATP-binding properties of this chimeric enzyme were not different from those of the wild type chicken enzyme. These results demonstrate that activation of the chicken 6PF-2K by ATP may result from allosteric binding of ATP to the bisphosphatase domain where residues Arg-279 and Arg-359 are critically involved and require specific C-terminal sequences.

Please choose payment method:






(PDF emailed within 0-6 h: $19.90)

Accession: 010237336

Download citation: RISBibTeXText

PMID: 11325970

DOI: 10.1074/jbc.m102366200


Related references

Lysine 356 is a critical residue for binding the C-6 phospho group of fructose 2,6-bisphosphate to the fructose-2,6-bisphosphatase domain of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Journal of Biological Chemistry 267(23): 16669-16675, 1992

Involvement of the chicken liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase sequence His444-Arg-Glu-Arg in modulation of the bisphosphatase activity by its kinase domain. Biochemical Journal 357(Pt 2): 513-520, 2001

Hepatic 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. The role of surface loop basic residues in substrate binding to the fructose-2,6-bisphosphatase domain. Journal of Biological Chemistry 267(30): 21588-21594, 1992

Separate bisphosphatase domain of chicken liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: the role of the C-terminal tail in modulating enzyme activity. Biochemical Journal 328(3): 751-756, 1997

Separate bisphosphatase domain of chicken liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: the role of the C-terminal tail in modulating enzyme activity. Biochemical Journal 328: 751-756, 1997

Arg-257 and Arg-307 of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase bind the C-2 phospho group of fructose-2,6-bisphosphate in the fructose-2,6-bisphosphatase domain. Journal of Biological Chemistry 267(27): 19163-19171, 1992

Expression of the bisphosphatase domain of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 85(18): 6642-6646, 1988

Mutagenesis of the fructose-6-phosphate-binding site in the 2-kinase domain of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. European Journal Of Biochemistry. 254(3): 490-496, E, 1998

Contribution of different protein phosphatases to the dephosphorylation of 6-phosphofructo-1-kinase and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase in rat liver. Biochemical Journal 225(3): 665-670, 1985

Expression of the bisphosphatase domain of 6 phosphofructo 2 kinase fructose 2 6 bisphosphatase in escherichia coli and characterization of its properties. FASEB Journal 2(4): ABSTRACT 1486, 1988

Bifunctionality of muscle and heart 6-phosphofructo-2-kinase: skeletal muscle 6-phosphofructo-2-kinase catalyses fructose 2,6-bisphosphate hydrolysis whereas heart 6-phosphofructo-2-kinase contains little fructose-2,6-bisphosphatase. Biochemical Society Transactions 15(3): 379-380, 1987

Vitamin A regulates genes involved in hepatic gluconeogenesis in mice: phosphoenolpyruvate carboxykinase, fructose-1,6-bisphosphatase and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Journal of nutrition 127(7): 1274-1278, 1997

Vitamin A Regulates Genes Involved in Hepatic Gluconeogenesis in Mice: Phosphoenolpyruvate Carboxykinase, Fructose-1,6-bisphosphatase and 6-Phosphofructo-2-kinase/Fructose-2,6-bisphosphatase. The Journal of Nutrition 127(7): 1274-1278, 1997

Isolation of a cDNA for chicken liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Biochemical and Biophysical Research Communications 190(2): 397-405, 1993

Identification of transient intermediates in the bisphosphatase reaction of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase by 31 P-Nmr spectroscopy. Biochemical Journal 308(1): 189-195, 1995