+ Site Statistics
References:
54,258,434
Abstracts:
29,560,870
PMIDs:
28,072,757
+ Search Articles
+ PDF Full Text Service
How our service works
Request PDF Full Text
+ Follow Us
Follow on Facebook
Follow on Twitter
Follow on LinkedIn
+ Subscribe to Site Feeds
Most Shared
PDF Full Text
+ Translate
+ Recently Requested

Direct fermentation of gelatinized sago starch to acetone-butanol-ethanol by Clostridium acetobutylicum



Direct fermentation of gelatinized sago starch to acetone-butanol-ethanol by Clostridium acetobutylicum



World Journal of Microbiology & Biotechnology 17(6): 567-576



Direct fermentation of gelatinized sago starch into solvent (acetone-butanol-ethanol) by Clostridium acetobutylicum P262 was studied using a 250 ml Schott bottle anaerobic fermentation system. Total solvent production from fermentation using 30 g sago starch/l (11.03 g/l) was comparable to fermentation using corn starch and about 2-fold higher than fermentation using potato or tapioca starch. At the range of sago starch concentration investigated (10-80 g/l), the highest total solvent production (18.82 g/l) was obtained at 50 g/l. The use of a mixture of organic and inorganic nitrogen source (yeast extract+NH4NO3) enhanced growth of C. acetobutylicum, starch hydrolysis and solvent production (24.47 g/l) compared to the use of yeast extract alone. This gave the yield based on sugar consumed of 0.45 g/g. Result from this study also showed that the individual concentrations of nitrogen and carbon influenced solvent production to a greater extent than did carbon to nitrogen (C/N) ratio.

Please choose payment method:






(PDF emailed within 0-6 h: $19.90)

Accession: 010474877

Download citation: RISBibTeXText

DOI: 10.1023/a:1012351112351


Related references

Anaerobic fermentation of gelatinized sago starch-derived sugars to acetone-1-butanol-ethanol solvent by Clostridium acetobutylicum. Folia Microbiologica 46(3): 197-204, 2001

Direct fermentation of gelatinized cassava starch to acetone, butanol, and ethanol using Clostridium acetobutylicum mutant obtained by atmospheric and room temperature plasma. Applied Biochemistry and Biotechnology 172(7): 3330-3341, 2014

Acetone-butanol-ethanol fermentation and pervaporation by Clostridium acetobutylicum B18. 1995

Enhancing acetone biosynthesis and acetone-butanol-ethanol fermentation performance by co-culturing Clostridium acetobutylicum/Saccharomyces cerevisiae integrated with exogenous acetate addition. Bioresource Technology 200: 111-120, 2017

Effect of zinc supplementation on acetone-butanol-ethanol fermentation by Clostridium acetobutylicum. Journal of Biotechnology 165(1): 18-21, 2013

Reaction engineering studies of acetone-butanol-ethanol fermentation with Clostridium acetobutylicum. Biotechnology Journal 7(5): 656-661, 2012

Continuous acetone-ethanol-butanol fermentation by immobilized cells of Clostridium acetobutylicum. Biomass and Bioenergy 20(2): 119-132, 2001

Targeted mutagenesis of the Clostridium acetobutylicum acetone-butanol-ethanol fermentation pathway. Metabolic Engineering 14(6): 630-641, 2013

Dual function of ammonium acetate in acetone-butanol-ethanol fermentation by Clostridium acetobutylicum. Bioresource Technology 267: 319-325, 2018

Promotion of the Clostridium acetobutylicum ATCC 824 growth and acetone-butanol-ethanol fermentation by flavonoids. World Journal of Microbiology and Biotechnology 30(7): 1969-1976, 2015

Integrated, systems metabolic picture of acetone-butanol-ethanol fermentation by Clostridium acetobutylicum. Proceedings of the National Academy of Sciences of the United States of America 112(27): 8505-8510, 2015

Assessment of morphological changes of Clostridium acetobutylicum by flow cytometry during acetone/butanol/ethanol extractive fermentation. Biotechnology Letters 37(3): 577-584, 2015

Directed metabolic flow and reduction state regulation in acetone butanol ethanol fermentation with clostridium acetobutylicum. Abstracts of Papers American Chemical Society 194: MBTD 37, 1987

CaCO 3 supplementation alleviates the inhibition of formic acid on acetone/butanol/ethanol fermentation by Clostridium acetobutylicum. Biotechnology Letters 39(1): 97-104, 2016

Continuous two stage acetone-butanol-ethanol fermentation with integrated solvent removal using Clostridium acetobutylicum B 5313. Bioresource Technology 106: 110-116, 2012