+ Site Statistics
References:
54,258,434
Abstracts:
29,560,870
PMIDs:
28,072,757
+ Search Articles
+ Subscribe to Site Feeds
Most Shared
PDF Full Text
+ PDF Full Text
Request PDF Full Text
+ Follow Us
Follow on Facebook
Follow on Twitter
Follow on LinkedIn
+ Translate
+ Recently Requested

Identification of acetylation and methylation sites of histone H3 from chicken erythrocytes by high-accuracy matrix-assisted laser desorption ionization-time-of-flight, matrix-assisted laser desorption ionization-postsource decay, and nanoelectrospray ionization tandem mass spectrometry



Identification of acetylation and methylation sites of histone H3 from chicken erythrocytes by high-accuracy matrix-assisted laser desorption ionization-time-of-flight, matrix-assisted laser desorption ionization-postsource decay, and nanoelectrospray ionization tandem mass spectrometry



Analytical Biochemistry 306(2): 259-269, July 15



A new strategy has been employed for the identification of the covalent modification sites (mainly acetylation and methylation) of histone H3 from chicken erythrocytes using low enzyme/substrate ratios and short digestion times (trypsin used as the protease) with analysis by HPLC separation, matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF), matrix-assisted laser desorption ionization-post-source decay, and tandem mass spectrometric techniques. High-accuracy MALDI-TOF mass measurements with representative immonium ions (126 for acetylated lysine, 98 for monomethylated lysine, and 84 for di-, tri-, and unmethylated lysine) have been effectively used for differentiating methylated peptides from acetylated peptides. Our results demonstrate that lysines 4, 9, 14, 27, and 36 of the N-terminal of H3 are methylated, while lysines 14, 18, and 23 are acetylated. Surprisingly, a non-N-terminal residue, lysine 79, in the loop region hooking up to the bound DNA, was newly found to be methylated (un-, mono-, and dimethylated isoforms coexist). The reported mass spectrometric method has the advantages of speed, directness, sensitivity, and ease over protein sequencing and Western-blotting methods and holds the promise of an improved method, for determining the status of histone modifications in the field of chromosome research.

(PDF emailed within 0-6 h: $19.90)

Accession: 010784142

Download citation: RISBibTeXText

PMID: 12123664

DOI: 10.1006/abio.2002.5719


Related references

Identification of methylation and acetylation sites on mouse histone H3 using matrix-assisted laser desorption/ionization time-of-flight and nanoelectrospray ionization tandem mass spectrometry. Journal of Protein Chemistry 22(4): 327-334, 2003

Chemically-assisted fragmentation combined with multi-dimensional liquid chromatography and matrix-assisted laser desorption/ionization post source decay, matrix-assisted laser desorption/ionization tandem time-of flight or matrix-assisted laser desorption/ionization tandem mass spectrometry for improved sequencing of tryptic peptides. European Journal of Mass Spectrometry 11(2): 169-179, 2005

Importance of matrix:analyte ratio for buffer tolerance using 2,5-dihydroxybenzoic acid as a matrix in matrix-assisted laser desorption/ionization-Fourier transform mass spectrometry and matrix-assisted laser desorption/ionization-time of flight. Journal of the American Society for Mass Spectrometry 9(8): 805-813, 1998

Identification of proteins separated by one-dimensional sodium dodecyl sulfate/polyacrylamide gel electrophoresis with matrix-assisted laser desorption/ionization ion trap mass spectrometry; comparison with matrix-assisted laser desorption/ionization time-of-flight mass fingerprinting. Rapid Communications in Mass Spectrometry 17(17): 1995-2004, 2003

Reverse micellar microextraction for rapid analysis of thiol-containing peptides and amino acids by atmospheric-pressure matrix-assisted laser desorption/ionization ion trap and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry 22(9): 1437-1444, 2008

Evaluation of combined matrix-assisted laser desorption/ionization time-of-flight and matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry experiments for peptide mass fingerprinting analysis. Rapid Communications in Mass Spectrometry 25(13): 1881-1892, 2011

Characterization of covalently inhibited extracellular lipase from Streptomyces rimosus by matrix-assisted laser desorption/ionization time-of-flight and matrix-assisted laser desorption/ionization quadrupole ion trap reflectron time-of-flight mass spectrometry: localization of the active site serine. Journal of Mass Spectrometry 39(12): 1474-1483, 2004

High-resolution infrared laser desorption/ionization and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of synthetic polymers. Journal of Mass Spectrometry 34(10): 1089-1092, 1999

How Suitable is Matrix-Assisted Laser Desorption/Ionization-Time-of-Flight for Metabolite Imaging from Clinical Formalin-Fixed and Paraffin-Embedded Tissue Samples in Comparison to Matrix-Assisted Laser Desorption/Ionization-Fourier Transform Ion Cyclotron Resonance Mass Spectrometry?. Analytical Chemistry 88(10): 5281-5289, 2018

Bare silica nanoparticles as concentrating and affinity probes for rapid analysis of aminothiols, lysozyme and peptide mixtures using atmospheric-pressure matrix-assisted laser desorption/ionization ion trap and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry 22(3): 283-290, 2008

In-source and postsource decay in negative-ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of neutral oligosaccharides. Analytical Chemistry 77(6): 1701-1707, 2005

Separation and identification of peptides in single neurons by microcolumn liquid chromatography-matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and postsource decay analysis. Analytical Chemistry 70(9): 1847-1852, 1998

Studies of pesticides by collision-induced dissociation, postsource-decay, matrix-assisted laser desorption/ionization time of flight mass spectrometry. Journal of the American Society for Mass Spectrometry 12(5): 590-598, 2001

Isomeric differentiation of asparagine-linked oligosaccharides by matrix-assisted laser desorption-ionization postsource decay time-of-flight mass spectrometry. Analytical Biochemistry 256(1): 33-46, 1998

Applications of silver nanoparticles capped with different functional groups as the matrix and affinity probes in surface-assisted laser desorption/ionization time-of-flight and atmospheric pressure matrix-assisted laser desorption/ionization ion trap mass spectrometry for rapid analysis of sulfur drugs and biothiols in human urine. Rapid Communications in Mass Spectrometry 22(18): 2863-2872, 2008