Home
  >  
Section 11
  >  
Chapter 10,928

Lipoprotein cholesterol uptake mediates up-regulation of bile-acid synthesis by increasing cholesterol 7alpha-hydroxylase but not sterol 27-hydroxylase gene expression in cultured rat hepatocytes

Post, S.M.; Twisk, J.; van der Fits, L.; de Wit, E.C.; Hoekman, M.F.; Mager, W.H.; Princen, H.M.

Biochemical Journal 341: 339-346

1999


ISSN/ISBN: 0264-6021
PMID: 10393091
Accession: 010927162

Download citation:  
Text
  |  
BibTeX
  |  
RIS

Lipoproteins may supply substrate for the formation of bile acids, and the amount of hepatic cholesterol can regulate bile-acid synthesis and increase cholesterol 7alpha-hydroxylase expression. However, the effect of lipoprotein cholesterol on sterol 27-hydroxylase expression and the role of different lipoproteins in regulating both enzymes are not well established. We studied the effect of different rabbit lipoproteins on cholesterol 7alpha-hydroxylase and sterol 27-hydroxylase in cultured rat hepatocytes. beta-Migrating very-low-density lipoprotein (betaVLDL) and intermediate-density lipoprotein (IDL) caused a significant increase in the intracellular cholesteryl ester content of cells (2. 3- and 2-fold, respectively) at a concentration of 200 microgram of cholesterol/ml, whereas high-density lipoprotein (HDL, 50% v/v), containing no apolipoprotein E (apo E), showed no effect after a 24-h incubation. betaVLDL and IDL increased bile-acid synthesis (1. 9- and 1.6-fold, respectively) by up-regulation of cholesterol 7alpha-hydroxylase activity (1.7- and 1.5-fold, respectively). Dose- and time-dependent changes in cholesterol 7alpha-hydroxylase mRNA levels and gene expression underlie the increase in enzyme activity. Incubation of cells with HDL showed no effect. Sterol 27-hydroxylase gene expression was not affected by any of the lipoproteins added. Transient-expression experiments in hepatocytes, transfected with a promoter-reporter construct containing the proximal 348 nucleotides of the rat cholesterol 7alpha-hydroxylase promoter, showed an enhanced gene transcription (2-fold) with betaVLDL, indicating that a sequence important for a cholesterol-induced transcriptional response is located in this part of the cholesterol 7alpha-hydroxylase gene. The extent of stimulation of cholesterol 7alpha-hydroxylase is associated with the apo E content of the lipoprotein particle, which is important in the uptake of lipoprotein cholesterol. We conclude that physiological concentrations of cholesterol in apo E-containing lipoproteins increase bile-acid synthesis by stimulating cholesterol 7alpha-hydroxylase gene transcription, whereas HDL has no effect and sterol 27-hydroxylase is not affected.

Full Text Article emailed within 1 workday: $29.90