Morphological changes in the vas deferens and expression of the cystic fibrosis transmembrane conductance regulator (CFTR) in control, deltaF508 and knock-out CFTR mice during postnatal life
Reynaert, I.; Van Der Schueren, B.; Degeest, G.; Manin, M.; Cuppens, H.; Scholte, B.; Cassiman, J.J.
Molecular Reproduction and Development 55(2): 125-135
2000
ISSN/ISBN: 1040-452X PMID: 10618651 DOI: 10.1002/(sici)1098-2795(200002)55:2<125::aid-mrd1>3.0.co;2-q
Accession: 011016425
The morphology of the mouse vas deferens still undergoes major changes from birth to 40 days of age, such as differentiation of the mesenchymal cells into fibroblasts and muscle cells, differentiation of the epithelium into basal and columnar epithelial cells, development of stereocilia, and the appearance of smooth endoplasmic reticulum organised in fingerprint-like structures or parallel, flattened saccules.
PDF emailed within 0-6 h: $19.90
Related References
Ren, A.; Zhang, W.; Yarlagadda, S.; Sinha, C.; Arora, K.; Moon, C.-S.; Naren, A.P. 2013: MAST205 competes with cystic fibrosis transmembrane conductance regulator (CFTR)-associated ligand for binding to CFTR to regulate CFTR-mediated fluid transport Journal of Biological Chemistry 288(17): 12325-12334Bruscia, E.M.; Price, J.E.; Cheng, E.-C.; Weiner, S.; Caputo, C.; Ferreira, E.C.; Egan, M.E.; Krause, D.S. 2006: Assessment of cystic fibrosis transmembrane conductance regulator (CFTR) activity in CFTR-null mice after bone marrow transplantation Proceedings of the National Academy of Sciences of the United States of America 103(8): 2965-2970
Guerra, L.; Fanelli, T.; Favia, M.; Riccardi, S.M.; Busco, G.; Cardone, R.A.; Carrabino, S.; Weinman, E.J.; Reshkin, S.J.; Conese, M.; Casavola, V. 2005: Na+/H+ exchanger regulatory factor isoform 1 overexpression modulates cystic fibrosis transmembrane conductance regulator (CFTR) expression and activity in human airway 16HBE14o- cells and rescues DeltaF508 CFTR functional expression in cystic fibrosis cells Journal of Biological Chemistry 280(49): 40925-40933
Tamanini, A.; Fabbri, E.; Jakova, T.; Gasparello, J.; Manicardi, A.; Corradini, R.; Finotti, A.; Borgatti, M.; Lampronti, I.; Munari, S.; Dechecchi, M.C.; Cabrini, G.; Gambari, R. 2021: A Peptide-Nucleic Acid Targeting miR-335-5p Enhances Expression of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Gene with the Possible Involvement of the CFTR Scaffolding Protein NHERF1 Biomedicines 9(2)
Marcorelles, P.; Friocourt, G.ël.; Uguen, A.; Ledé, F.ço.; Férec, C.; Laquerrière, A. 2014: Cystic fibrosis transmembrane conductance regulator protein (CFTR) expression in the developing human brain: comparative immunohistochemical study between patients with normal and mutated CFTR Journal of Histochemistry and Cytochemistry: Official Journal of the Histochemistry Society 62(11): 791-801
Sultan, S.; Rozzi, A.; Gasparello, J.; Manicardi, A.; Corradini, R.; Papi, C.; Finotti, A.; Lampronti, I.; Reali, E.; Cabrini, G.; Gambari, R.; Borgatti, M. 2020: A Peptide Nucleic Acid (PNA) Masking the miR-145-5p Binding Site of the 3'UTR of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) mRNA Enhances CFTR Expression in Calu-3 Cells Molecules 25(7)
Xu, Y.; Liu, C.; Clark, J.C.; Whitsett, J.A. 2006: Functional genomic responses to cystic fibrosis transmembrane conductance regulator (CFTR) and CFTR(delta508) in the lung Journal of Biological Chemistry 281(16): 11279-11291
Sakamoto, H.; Yajima, T.; Suzuki, K.; Ogawa, Y. 2008: Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation associated with a congenital bilateral absence of vas deferens International Journal of Urology: Official Journal of the Japanese Urological Association 15(3): 270-271
Sun, F.; Zhang, R.; Gong, X.; Geng, X.; Drain, P.F.; Frizzell, R.A. 2006: Derlin-1 promotes the efficient degradation of the cystic fibrosis transmembrane conductance regulator (CFTR) and CFTR folding mutants Journal of Biological Chemistry 281(48): 36856-36863
Liu, X.; Dawson, D.C. 2014: Cystic fibrosis transmembrane conductance regulator (CFTR) potentiators protect G551D but not ΔF508 CFTR from thermal instability Biochemistry 53(35): 5613-5618
Lukowski, S.W.; Bombieri, C.; Trezise, A.E.O. 2011: Disrupted post-transcriptional regulation of the cystic fibrosis transmembrane conductance regulator (CFTR) by a 5'UTR mutation is associated with a CFTR-related disease Human Mutation 32(10): E2266-E2282
Li, H.; Wen, Q.; Li, H.; Zhao, L.; Zhang, X.; Wang, J.; Cheng, L.; Yang, J.; Chen, S.; Ma, X.; Wang, B. 2012: Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) in Chinese patients with congenital bilateral absence of vas deferens Journal of Cystic Fibrosis: Official Journal of the European Cystic Fibrosis Society 11(4): 316-323
Bernard, K.; Wang, W.; Narlawar, R.; Schmidt, B.; Kirk, K.L. 2009: Curcumin cross-links cystic fibrosis transmembrane conductance regulator (CFTR) polypeptides and potentiates CFTR channel activity by distinct mechanisms Journal of Biological Chemistry 284(45): 30754-30765
Haggie, P.M.; Stanton, B.A.; Verkman, A.S. 2002: Diffusional mobility of the cystic fibrosis transmembrane conductance regulator mutant, DF508-CFTR, in the endoplasmic reticulum measured by photobleaching of GFP-CFTR chimeras Journal of Biological Chemistry 277(19): 419-425
Bajmoczi, M.; Alper, S.L.; Golan, D.E.; Pier, G.B. 2006: Cystic fibrosis transmembrane conductance regulator (CFTR) and caveolin-1 regulate internalization of Pseudomonas aeruginosa by a CF bronchial epithelial cell line rescued with GFP-CFTR Abstracts of the General Meeting of the American Society for 106): 202
Davezac, N.; Tondelier, D.; Lipecka, J.; Fanen, P.; Demaugre, F.; Debski, J.; Dadlez, M.; Schrattenholz, A.; Cahill, M.A.; Edelman, A. 2004: Global proteomic approach unmasks involvement of keratins 8 and 18 in the delivery of cystic fibrosis transmembrane conductance regulator (CFTR)/ΔF508-CFTR to the plasma membrane Proteomics (Weinheim. Print) 4(12): 3833-3844
Haggie, P.M.; Stanton, B.A.; Verkman, A.S. 2002: Diffusional mobility of the cystic fibrosis transmembrane conductance regulator mutant, delta F508-CFTR, in the endoplasmic reticulum measured by photobleaching of GFP-CFTR chimeras Journal of Biological Chemistry 277(19): 16419-16425
Davezac, Nélie.; Tondelier, D.; Lipecka, J.; Fanen, P.; Demaugre, F.; Debski, J.; Dadlez, M.; Schrattenholz, Aé.; Cahill, M.A.; Edelman, A. 2004: Global proteomic approach unmasks involvement of keratins 8 and 18 in the delivery of cystic fibrosis transmembrane conductance regulator (CFTR)/deltaF508-CFTR to the plasma membrane Proteomics 4(12): 3833-3844
Briel, M.; Greger, R.; Kunzelmann, K. 1998: Cl- transport by cystic fibrosis transmembrane conductance regulator (CFTR) contributes to the inhibition of epithelial Na+ channels (ENaCs) in Xenopus oocytes co-expressing CFTR and ENaC Journal of Physiology 508: 825-836
Clancy, J.P.; Hong, J.S.; Bebök, Z.; King, S.A.; Demolombe, S.; Bedwell, D.M.; Sorscher, E.J. 1998: Cystic fibrosis transmembrane conductance regulator (CFTR) nucleotide-binding domain 1 (NBD-1) and CFTR truncated within NBD-1 target to the epithelial plasma membrane and increase anion permeability Biochemistry 37(43): 15222-15230