Section 12
Chapter 11,252

Real-world vehicle emissions and VOCs profile in the Taipei tunnel located at Taiwan Taipei area

Hwa, M.Y.; Hsieh, C.C.; Wu, T.C.; Chang, L.F.W.

Atmospheric Environment 36(12): 1993-


ISSN/ISBN: 0004-6981
DOI: 10.1016/s1352-2310(02)00148-6
Accession: 011251196

Download citation:  

An in situ field experiment was conducted in a highway road tunnel in the Taipei City to determine the motor vehicle emission factors (EF) of different kinds of air pollution species. These are carbon monoxide (CO), oxides of nitrogen (NOx), non-methane hydrocarbons (NMHC) and VOCs species. About 56 species of VOCs were sampled by canister sampler and followed by the GC-MS analyzing. Furthermore, the tunnel-drafting rate was determined by SF6 tracer method. The EF for the highway vehicles determined from this experiment are 3.64, 0.90, 0.44 and 0.24 gm km-1 veh-1 for CO, NOx, NMHC and the totally measured VOCs, respectively. A comparison of the EFs from the road tunnel experiment to the estimates by the USEPA MOBILE5b (M5b) and the modified Taiwan EPA MOBILE-TAIWAN2.0 (MT2.0) provides a first-hand evaluation of the model characteristics. M5b and MT2.0 both tend to underpredict CO by 10% and 20%, respectively. While M5b overpredicts NOx and NMHC by 40% and 20%, respectively; MT2.0 has fairly good predictions for these two species. From the GC-MS analysis of the canister samples, it was found that the most abundant species from the traffic-emitted VOCs in Taipei road tunnel are toluene, ethene and 1,2,4-trimethylbenzene (1,2,4-TMB) by the weight basis. However, ethene, acetylene and toluene are the most abundant in VOCs based on volume. The VOCs' weight composition in terms of the carbon bond classification is 28% by the paraffins, 33% by the olefins and 39% by the aromatics, respectively. In order to evaluate the ozone formation potential from the typical road emission in Taipei area, the maximum increment reactivity is calculated. It was found that about 1015 mg of O3 is induced by per vehicle per kilometer traveled emission. Among them, ethene, 1,2,4-TMB and propene from the road vehicle's emission contribute most to the ozone-formation reactivity.

PDF emailed within 0-6 h: $19.90