Section 12
Chapter 11,337

Selective induction of eotaxin release by interleukin-13 or interleukin-4 in human airway smooth muscle cells is synergistic with interleukin-1beta and is mediated by the interleukin-4 receptor alpha-chain

Hirst, S.J.; Hallsworth, M.P.; Peng, Q.; Lee, T.H.

American Journal of Respiratory and Critical Care Medicine 165(8): 1161-1171


ISSN/ISBN: 1073-449X
PMID: 11956062
DOI: 10.1164/ajrccm.165.8.2107158
Accession: 011336980

Download citation:  

The biologic activities of interleukin (IL)-13 and IL-4 often overlap, and evidence supports their importance in atopic disease and airways hyperresponsiveness. Here, their capacity to release eosinophil-activating cytokines was examined in cultured human airway smooth muscle. IL-13 and IL-4 induced selective release of eotaxin with no effect on granulocyte-macrophage colony-stimulating factor, regulated upon activation, normal T-cell expressed and secreted (RANTES), or IL-8. A profound synergistic increase in eotaxin release occurred when IL-13 or IL-4 was combined with IL-1beta that was abrogated by a neutralizing antibody to the IL-4 receptor alpha (IL-4Ralpha)-chain but not to the IL-2 receptor gamma (IL-2Rgamma)-chain. Expression of cell surface IL-4 receptors and IL-4Ralpha in lysates was constitutive and unchanged by treatment with IL-13 or IL-4 alone or in combination with IL-1beta. Activation of IL-4Ralpha by IL-13 or IL-4 induced signal transducer and activation of transcription-6 (STAT6), p42/ p44 ERK, p38, and to a lesser extent, SAPK/JNK mitogen-activated protein kinase phosphorylation. STAT6 and MAP kinase activation by IL-13 or IL-4 was not further potentiated after combined stimulation with IL-1beta. However, eotaxin release induced by IL-13 or IL-4 alone, and in combination with IL-1beta, was prevented by the MEK inhibitor U 0126 and by the p38 inhibitor SB 202190. Collectively, the data suggest that selective eotaxin release induced either by IL-13 and IL-4 or when combined with IL-1beta is mediated by a constitutive cell surface IL-4Ralpha and the activation of multiple intracellular pathways.

PDF emailed within 0-6 h: $19.90