Home
  >  
Section 12
  >  
Chapter 11,474

The UV waveband dependencies in mice differ for the suppression of contact hypersensitivity, delayed-type hypersensitivity and cis-urocanic acid formation

El-Ghorr, A.A.; Norval, M.

Journal of Investigative Dermatology 112(5): 757-762

1999


ISSN/ISBN: 0022-202X
PMID: 10233768
DOI: 10.1046/j.1523-1747.1999.00565.x
Accession: 011473568

Download citation:  
Text
  |  
BibTeX
  |  
RIS

Solar radiation contains ultraviolet B (280-315 nm) and ultraviolet A (ultraviolet AII, 315-340 nm; ultraviolet AI, 340-400 nm) wavebands. Ultraviolet B is known to suppress certain aspects of cell mediated immunity. Using three ultraviolet lamps (the broad-band ultraviolet B TL-12, the narrow-band ultraviolet B TL-01 and an ultraviolet AI source), we investigated the dose and waveband dependencies for the suppression of contact hypersensitivity to oxazolone and delayed-type hypersensitivity to herpes simplex virus, plus the formation of cis-urocanic acid in C3H/HeN mice. A single exposure of 1500 J/m2 TL-12 or 10,000 J/m2 TL-01 or 500,000 J/m2 ultraviolet AI corresponded to 1 minimum erythema dose in this mouse strain. The percentage of cis-urocanic acid of the total urocanic acid rose from a background level of 1.7% to 40% with 1000 J/m2 TL-12 or 10,000 J/m2 TL-01, but only 17% cis-urocanic acid was obtained with 500,000 J/m2 ultraviolet AI. The contact hypersensitivity response was significantly suppressed after a minimum dose of 5000 J/m2 TL-12 or 50,000 J/m2 TL-01 or 500,000 J/m2 ultraviolet AI. The delayed-type hypersensitivity response was suppressed by a minimum dose of 100 J/m2 TL-12 or 10,000 J/m2 TL-01 or 1000 J/m2 ultraviolet AI. So, whereas a low dose of ultraviolet AI reduced the delayed-type hypersensitivity response, a 500-fold higher dose was required to suppress contact hypersensitivity. There was no correlation between the suppression of these responses and the concentration of cis-urocanic acid in the skin. Thus different mediators may modulate the various immune responses affected by ultraviolet exposure, depending on the wavelength of the radiation.

PDF emailed within 0-6 h: $19.90