+ Site Statistics
+ Search Articles
+ PDF Full Text Service
How our service works
Request PDF Full Text
+ Follow Us
Follow on Facebook
Follow on Twitter
Follow on LinkedIn
+ Subscribe to Site Feeds
Most Shared
PDF Full Text
+ Translate
+ Recently Requested

Development of a quantitative assay for SARS coronavirus and correlation of GAPDH mRNA with SARS coronavirus in clinical specimens



Development of a quantitative assay for SARS coronavirus and correlation of GAPDH mRNA with SARS coronavirus in clinical specimens



Journal of Clinical Pathology 58(3): 276-280



To develop a quantitative reverse transcriptase polymerase chain reaction (Q-RT-PCR) for severe acute respiratory syndrome coronavirus (SARS-CoV) detection and explore the potential of using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA as an internal control to exclude false negative results. SARS-CoV and GAPDH mRNA were both measured in 26 specimens from 16 patients with SARS, 40 follow up specimens from the same batch of patients, and appropriate control subjects. The relation between SARS positivity and GAPDH mRNA concentration was investigated using the chi2 test. Increasing the sensitivity for SARS-CoV and GAPDH mRNA detection was investigated in follow up specimens in which SARS-CoV and GAPDH mRNA were not detected initially. Varying amounts of SARS-CoV were found in the 26 SARS-CoV positive specimens and SARS-CoV was not detected in the 40 follow up specimens and controls. In addition, concentrations of GAPDH mRNA were significantly different between the patients with SARS, follow up specimens, and healthy controls (Kruskal-Wallis test, p<0.05). Moreover, GAPDH mRNA concentrations were highly correlated with SARS-CoV positivity (chi2 = 5.43; p<0.05). Finally, SARS-CoV and GAPDH mRNA were both detected in three follow up urine specimens that were initially negative when the amount of cDNA used was increased from 5 microl to 10 and 15 microl. This Q-RT-PCR assay can be used to detect SARS-CoV. Moreover, GAPDH mRNA may be useful to rule out false negative results in SARS-CoV detection, and the current extraction method for urine may not be sensitive enough to detect low titres of SARS-CoV.

Please choose payment method:






(PDF emailed within 0-6 h: $19.90)

Accession: 011944936

Download citation: RISBibTeXText

PMID: 15735160

DOI: 10.1136/jcp.2004.016592


Related references

Differential sensitivities of severe acute respiratory syndrome (SARS) coronavirus spike polypeptide enzyme-linked immunosorbent assay (ELISA) and SARS coronavirus nucleocapsid protein ELISA for serodiagnosis of SARS coronavirus pneumonia. Journal of Clinical Microbiology 43(7): 3054-3058, 2005

Development and evaluation of an efficient 3'-noncoding region based SARS coronavirus (SARS-CoV) RT-PCR assay for detection of SARS-CoV infections. Journal of Virological Methods 120(1): 33-40, 2004

Alisporivir inhibits MERS- and SARS-coronavirus replication in cell culture, but not SARS-coronavirus infection in a mouse model. Virus Research 228: 7, 2017

Mutagenesis of the transmembrane domain of the SARS coronavirus spike glycoprotein: refinement of the requirements for SARS coronavirus cell entry. Virology Journal 6: 230, 2009

Evidence of the recombinant origin of a bat severe acute respiratory syndrome (SARS)-like coronavirus and its implications on the direct ancestor of SARS coronavirus. Journal of Virology 82(4): 1819-1826, 2008

Difference in receptor usage between severe acute respiratory syndrome (SARS) coronavirus and SARS-like coronavirus of bat origin. Journal of Virology 82(4): 1899-1907, 2008

Detection of specific antibodies to severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein for serodiagnosis of SARS coronavirus pneumonia. Journal of Clinical Microbiology 42(5): 2306-2309, 2004

Mouse studies of SARS coronavirus-specific immune responses to recombinant replication-defective adenovirus expressing SARS coronavirus N protein. Hong Kong Medical Journal 15(Suppl. 2): 33-36, 2009

Das SARS-assoziierte Coronavirus Die erste Pandemie des 21. Jahrhunderts / The SARS-associated coronavirus The first pandemic of the 21st century. Laboratoriums Medizin 28(1): 42-55, 2004

Longitudinal profile of immunoglobulin G (IgG), IgM, and IgA antibodies against the severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein in patients with pneumonia due to the SARS coronavirus. Clinical and Diagnostic Laboratory Immunology 11(4): 665-668, 2004

Severe Acute Respiratory Syndrome (SARS) Coronavirus ORF8 Protein Is Acquired from SARS-Related Coronavirus from Greater Horseshoe Bats through Recombination. Journal of Virology 89(20): 10532-10547, 2015

Anti-SARS virus antibody responses against human SARS-associated coronavirus and animal SARS-associated coronavirus-like virus. Chinese Medical Journal 117(11): 1723-1725, 2004

Relative rates of non-pneumonic SARS coronavirus infection and SARS coronavirus pneumonia. Lancet 363(9412): 841-845, 2004

Development of a red-shifted fluorescence-based assay for SARS-coronavirus 3CL protease: identification of a novel class of anti-SARS agents from the tropical marine sponge Axinella corrugata. Biological Chemistry 387(8): 1063-1074, 2006

Immunogenicity difference between the SARS coronavirus and the bat SARS-like coronavirus spike (S) proteins. Biochemical and Biophysical Research Communications 387(2): 326-329, 2009