+ Site Statistics
+ Search Articles
+ PDF Full Text Service
How our service works
Request PDF Full Text
+ Follow Us
Follow on Facebook
Follow on Twitter
Follow on LinkedIn
+ Subscribe to Site Feeds
Most Shared
PDF Full Text
+ Translate
+ Recently Requested

Endothelial cell superoxide anion radical generation is not dependent on endothelial nitric oxide synthase-serine 1179 phosphorylation and endothelial nitric oxide synthase dimer/monomer distribution



Endothelial cell superoxide anion radical generation is not dependent on endothelial nitric oxide synthase-serine 1179 phosphorylation and endothelial nitric oxide synthase dimer/monomer distribution



Free Radical Biology and Medicine 40(11): 2056-2068



Tetrahydrobiopterin (BH4) and heat shock protein 90 (hsp90) have been anticipated to regulate endothelial nitric oxide synthase (eNOS)-dependent superoxide anion radical (O2*-) generation in endothelial cells. It is not known, however, whether hsp90 and BH4 increase O2*- in a synergistic manner, or whether this increase is a consequence of downstream changes in eNOS phosphorylation on serine 1179 (eNOS-S1179) and changes in dimer/monomer distribution. Here O2*- production from purified BH4 -free eNOS and eNOS:hsp90 complexes determined by spin-trapping methodology showed that hsp90 neither inhibits O2*- nor alters the requirement of BH4 to inhibit radical release from eNOS. In endothelial cells, O2*- detection with the novel high-performance liquid chromatography assay of 2-hydroxyethidium showed that inhibition of hsp90 did not increase O2*-, while a significant increase in O2*- was detected in BH4 -depleted cells. Radicicol, a hsp90 inhibitor, disrupted eNOS:hsp90 association, decreased eNOS-S1179, but increased biopterin production in a dose-dependent fashion. These changes were followed by an increase in eNOS activity, demonstrating that high biopterin levels offset inhibition of eNOS phosphorylation and diminished interaction with hsp90. In contrast, depletion of biopterin did not affect hsp90 levels or interaction with eNOS or eNOS dimer/monomer ratio in bovine aorta endothelial cells (BAECs). We conclude that low BH4 but not inhibition of hsp90 increases O2*- in BAECs by mechanism(s) that unlikely involve phosphorylation to eNOS-S1179 or eNOS monomerization.

Please choose payment method:






(PDF emailed within 0-6 h: $19.90)

Accession: 012037298

Download citation: RISBibTeXText

PMID: 16716906

DOI: 10.1016/j.freeradbiomed.2006.02.001


Related references

Phosphorylation of serine 1179 enhances superoxide generation from endothelial nitric oxide synthase. Circulation 108(17 Supplement): IV-31, October 28, 2003

Serine 1179 Phosphorylation of Endothelial Nitric Oxide Synthase Increases Superoxide Generation and Alters Cofactor Regulation. Plos One 10(11): E0142854, 2016

Superoxide generation from the reductase domain of endothelial nitric-oxide synthase is tetrahydrobiopterin independent but regulated by serine 1179 phosphorylation. Circulation 108(17 Supplement): IV-28, October 28, 2003

B56α subunit of protein phosphatase 2A mediates retinoic acid-induced decreases in phosphorylation of endothelial nitric oxide synthase at serine 1179 and nitric oxide production in bovine aortic endothelial cells. Biochemical and Biophysical Research Communications 430(2): 476-481, 2013

Far-infrared radiation acutely increases nitric oxide production by increasing Ca(2+) mobilization and Ca(2+)/calmodulin-dependent protein kinase II-mediated phosphorylation of endothelial nitric oxide synthase at serine 1179. Biochemical and Biophysical Research Communications 436(4): 601-606, 2013

Serine 1179 phosphorylation of endothelial nitric oxide synthase caused by 2,4,6-trinitrotoluene through PI3K/Akt signaling in endothelial cells. Toxicology and Applied Pharmacology 214(1): 55-60, 2006

Retinoic acid decreases nitric oxide production in endothelial cells: a role of phosphorylation of endothelial nitric oxide synthase at Ser(1179). Biochemical and Biophysical Research Communications 326(4): 703-710, 2004

A defect of neuronal nitric oxide synthase increases superoxide anion and attenuates the control of myocardial oxygen consumption by nitric oxide derived from endothelial nitric oxide synthase. FASEB Journal 18(4-5): Abst 859 5, 2004

Phosphorylation of tyrosine 801 of vascular endothelial growth factor receptor-2 is necessary for Akt-dependent endothelial nitric-oxide synthase activation and nitric oxide release from endothelial cells. Journal of Biological Chemistry 282(14): 10660-9, 2007

Endothelial Cell Autophagy Maintains Shear Stress-Induced Nitric Oxide Generation via Glycolysis-Dependent Purinergic Signaling to Endothelial Nitric Oxide Synthase. Arteriosclerosis, Thrombosis, and Vascular Biology 37(9): 1646-1656, 2017

Chk1 and Hsp9 cooperatively regulate phosphorylation of endothelial nitric oxide synthase at serine 1179. 2011

Chk1 and Hsp90 cooperatively regulate phosphorylation of endothelial nitric oxide synthase at serine 1179. Free Radical Biology and Medicine 51(12): 2217-2226, 2012

Heatshock protein 90 regulates endothelial nitric oxide synthase generation of nitric oxide and superoxide anion. FASEB Journal 15(5): A781, March 8, 2001

A defect of neuronal nitric oxide synthase increases xanthine oxidase-derived superoxide anion and attenuates the control of myocardial oxygen consumption by nitric oxide derived from endothelial nitric oxide synthase. Circulation Research 96(3): 355-362, 2005

Localization of endothelial nitric-oxide synthase phosphorylated on serine 1179 and nitric oxide in Golgi and plasma membrane defines the existence of two pools of active enzyme. Journal of Biological Chemistry 277(6): 4277-4284, 2001