+ Site Statistics
+ Search Articles
+ PDF Full Text Service
How our service works
Request PDF Full Text
+ Follow Us
Follow on Facebook
Follow on Twitter
Follow on LinkedIn
+ Subscribe to Site Feeds
Most Shared
PDF Full Text
+ Translate
+ Recently Requested

Evolution of enzymatic activities in the orotidine 5'-monophosphate decarboxylase suprafamily: structural basis for catalytic promiscuity in wild-type and designed mutants of 3-keto-L-gulonate 6-phosphate decarboxylase



Evolution of enzymatic activities in the orotidine 5'-monophosphate decarboxylase suprafamily: structural basis for catalytic promiscuity in wild-type and designed mutants of 3-keto-L-gulonate 6-phosphate decarboxylase



Biochemistry 44(6): 1816-1823



3-Keto-L-gulonate 6-phosphate decarboxylase (KGPDC) and D-arabino-hex-3-ulose 6-phosphate synthase (HPS), members of the orotidine 5'-monophosphate decarboxylase (OMPDC) suprafamily, catalyze reactions that involve the formation of Mg2+-ion stabilized 1,2-enediolate intermediates.

Please choose payment method:






(PDF emailed within 0-6 h: $19.90)

Accession: 012064600

Download citation: RISBibTeXText

PMID: 15697207

DOI: 10.1021/bi0478143


Related references

Evolution of enzymatic activities in the orotidine 5'-monophosphate decarboxylase suprafamily: crystallographic evidence for a proton relay system in the active site of 3-keto-L-gulonate 6-phosphate decarboxylase. Biochemistry 43(21): 6438-6446, 2004

Evolution of enzymatic activities in the orotidine 5'-monophosphate decarboxylase suprafamily: mechanistic evidence for a proton relay system in the active site of 3-keto-L-gulonate 6-phosphate decarboxylase. Biochemistry 43(21): 6427-6437, 2004

Evolution of enzymatic activities in the orotidine 5'-monophosphate decarboxylase suprafamily: enhancing the promiscuous D-arabino-hex-3-ulose 6-phosphate synthase reaction catalyzed by 3-keto-L-gulonate 6-phosphate decarboxylase. Biochemistry 44(6): 1807-1815, 2005

Evolution of active site architecture in the orotidine 5-monophosphate decarboxylase suprafamily Mechanistic insights for 3-keto-L-gulonate 6-phosphate decarboxylase. FASEB Journal 16(5): A904, March 22, 2002

Structural evidence for a 1,2-enediolate intermediate in the reaction catalyzed by 3-keto-L-gulonate 6-phosphate decarboxylase, a member of the orotidine 5'-monophosphate decarboxylase suprafamily. Biochemistry 42(42): 12133-12142, 2003

Establishing paradigms in the orotidine 5-monophosphate decarboxylase suprafamily from studies of the reaction catalyzed by 3-keto-L-gulonate 6-phosphate decarboxylase. Abstracts of Papers American Chemical Society 226(1-2): BIOL 116, 2003

Homologous (/) 8 -Barrel Enzymes That Catalyze Unrelated Reactions: Orotidine 5-Monophosphate Decarboxylase and 3-Keto- l -Gulonate 6-Phosphate Decarboxylase ,. Biochemistry 41(12): 3861-3869, 2002

Homologous (b/a)8-barrel enzymes that catalyze unrelated reactions: orotidine 5'-monophosphate decarboxylase and 3-keto- L-gulonate 6-phosphate decarboxylase. Biochemistry (American Chemical Society) 41(12): 61-9, 2002

Homologous (beta/alpha)8-barrel enzymes that catalyze unrelated reactions: orotidine 5'-monophosphate decarboxylase and 3-keto-L-gulonate 6-phosphate decarboxylase. Biochemistry 41(12): 3861-3869, 2002

Evolution of active site architecture in the OMPDC suprafamily Efforts in the design and evolution of 3-keto-L-gulonate 6-phosphate decarboxylase. FASEB Journal 17(4-5): Abstract No 625 2, 2003

Crystal structure of 3-hexulose-6-phosphate synthase, a member of the orotidine 5'-monophosphate decarboxylase suprafamily. Proteins 78(16): 3488-3492, 2011

The structural basis for the remarkable catalytic proficiency of orotidine 5'-monophosphate decarboxylase. Current Opinion in Structural Biology 10(6): 711-718, 2000

Structural basis for the catalytic mechanism of a proficient enzyme: Orotidine 5'-monophosphate decarboxylase. Biochemistry 39(15): 4217-4224, April 18, 2000

Crystal structures of the wild-type, P1A mutant, and inactivated malonate semialdehyde decarboxylase: a structural basis for the decarboxylase and hydratase activities. Biochemistry 44(45): 14818-14827, 2005

Structural basis for the decarboxylation of orotidine 5-monophosphate by Plasmodium falciparum OMP decarboxylase. Journal Of Biochemistry (tokyo)3: 1, 69-78, 2008