+ Site Statistics
References:
54,258,434
Abstracts:
29,560,870
PMIDs:
28,072,757
+ Search Articles
+ PDF Full Text Service
How our service works
Request PDF Full Text
+ Follow Us
Follow on Facebook
Follow on Twitter
Follow on LinkedIn
+ Subscribe to Site Feeds
Most Shared
PDF Full Text
+ Translate
+ Recently Requested

FTIR difference spectroscopy in combination with isotope labeling for identification of the carbonyl modes of P700 and P700+ in photosystem I



FTIR difference spectroscopy in combination with isotope labeling for identification of the carbonyl modes of P700 and P700+ in photosystem I



Biophysical Journal 86(2): 1061-1073



Room temperature, light induced (P700(+)-P700) Fourier transform infrared (FTIR) difference spectra have been obtained using photosystem I (PS I) particles from Synechocystis sp. PCC 6803 that are unlabeled, uniformly (2)H labeled, and uniformly (15)N labeled. Spectra were also obtained for PS I particles that had been extensively washed and incubated in D(2)O. Previously, we have found that extensive washing and incubation of PS I samples in D(2)O does not alter the (P700(+)-P700) FTIR difference spectrum, even with approximately 50% proton exchange. This indicates that the P700 binding site is inaccessible to solvent water. Upon uniform (2)H labeling of PS I, however, the (P700(+)-P700) FTIR difference spectra are considerably altered. From spectra obtained using PS I particles grown in D(2)O and H(2)O, a ((1)H-(2)H) isotope edited double difference spectrum was constructed, and it is shown that all difference bands associated with ester/keto carbonyl modes of the chlorophylls of P700 and P700(+) downshift 4-5/1-3 cm(-1) upon (2)H labeling, respectively. It is also shown that the ester and keto carbonyl modes of the chlorophylls of P700 need not be heterogeneously distributed in frequency. Finally, we find no evidence for the presence of a cysteine mode in our difference spectra. The spectrum obtained using (2)H labeled PS I particles indicates that a negative difference band at 1698 cm(-1) is associated with at least two species. The observed (15)N and (2)H induced band shifts strongly support the idea that the two species are the 13(1) keto carbonyl modes of both chlorophylls of P700. We also show that a negative difference band at approximately 1639 cm(-1) is somewhat modified in intensity, but unaltered in frequency, upon (2)H labeling. This indicates that this band is not associated with a strongly hydrogen bonded keto carbonyl mode of one of the chlorophylls of P700.

Please choose payment method:






(PDF emailed within 0-6 h: $19.90)

Accession: 012081023

Download citation: RISBibTeXText

PMID: 14747341

DOI: 10.1016/s0006-3495(04)74181-8


Related references

Ftir Study of the Primary Electron Donor of Photosystem I (P700) Revealing Delocalization of the Charge in P700 + and Localization of the Triplet Character in 3 P700. Biochemistry 38(36): 11585-11592, 1999

FTIR study of the primary electron donor of photosystem I (P700) revealing delocalization of the charge in P700(+) and localization of the triplet character in (3)P700. Biochemistry 38(36): 11585-11592, 1999

FTIR spectroscopy of synechocystis 6803 mutants affected on the hydrogen bonds to the carbonyl groups of the PsaA chlorophyll of P700 supports an extensive delocalization of the charge in P700+. Biochemistry 43(26): 8380-8390, 2004

Characterization of the primary electron donor of photosystem I, P700, by electrochemistry and Fourier transform infrared (FTIR) difference spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 52(1): 107-121, 1996

Primary donor photo-oxidation in photosystem I: a re-evaluation of (P700(+) - P700) Fourier transform infrared difference spectra. Biochemistry 40(43): 12943-9, 2001

Time-resolved FTIR difference spectroscopy in combination with specific isotope labeling for the study of A1, the secondary electron acceptor in photosystem 1. Biophysical Journal 94(11): 4383-4392, 2008

Mutation induced modulation of hydrogen bonding to P700 studied using FTIR difference spectroscopy. Biochemistry 42(33): 9889-9897, 2003

Charge recombination between P700+ and A1- occurs directly to the ground state of P700 in a photosystem I core devoid of FX, FB, and FA. Biochemistry 32(3): 849-857, 1993

Isolation and structural characterization of monomeric and trimeric photosystem I complexes (P700.FA/FB and P700.FX) from the cyanobacterium Synechocystis PCC 6803. Journal of Biological Chemistry 268(31): 23353-23360, 1993

The two histidine axial ligands of the primary electron donor chlorophylls (P700) in photosystem I are similarly perturbed upon P700+ formation. Biochemistry 41(37): 11200-11210, 2002

Photosystem I photochemistry under highly reducing conditions: study of the P700 triplet state formation from the secondary radical pair (P700+-A1-). Biochimica et Biophysica Acta, Bioenergetics 1020(3): 232-238, 1990

Photosystem i photochemistry under highly reducing conditions study of the p700 triple state formation from the secondary radical pair p700 positive a 1 negative. Biochimica et Biophysica Acta 1020(3): 232-238, 1990

Site-directed isotope labeling and ATR-FTIR difference spectroscopy of bacteriorhodopsin: the peptide carbonyl group of Tyr 185 is structurally active during the bR - > N transition. Biochemistry (American Chemical Society) 34: 6, 1995

Site-Directed Isotope Labeling and ATR-FTIR Difference Spectroscopy of Bacteriorhodopsin: The Peptide Carbonyl Group of Tyr 185 Is Structurally Active During the bR fwdarw N Transition. Biochemistry 34(1): 2-6, 1995

Fluorescence of p700 and antenna chlorophylls in photosystem i particles that contain 11 chlorophylls p700. Biochimica et Biophysica Acta 1100(3): 278-284, 1992