+ Site Statistics
+ Search Articles
+ PDF Full Text Service
How our service works
Request PDF Full Text
+ Follow Us
Follow on Facebook
Follow on Twitter
Follow on LinkedIn
+ Subscribe to Site Feeds
Most Shared
PDF Full Text
+ Translate
+ Recently Requested

Mucosal immunisation of African green monkeys (Cercopithecus aethiops) with an attenuated parainfluenza virus expressing the SARS coronavirus spike protein for the prevention of SARS



Mucosal immunisation of African green monkeys (Cercopithecus aethiops) with an attenuated parainfluenza virus expressing the SARS coronavirus spike protein for the prevention of SARS



Lancet 363(9427): 2122-2127



The outbreak of severe acute respiratory syndrome (SARS) in 2002 was caused by a previously unknown coronavirus-SARS coronavirus (SARS-CoV). We have developed an experimental SARS vaccine for direct immunisation of the respiratory tract, the major site of SARS- coronavirus transmission and disease. We expressed the complete SARS coronavirus envelope spike (S) protein from a recombinant attenuated parainfluenza virus (BHPIV3) that is being developed as a live attenuated, intranasal paediatric vaccine against human parainfluenza virus type 3 (HPIV3). We immunised eight African green monkeys, four with a single dose of BHPIV3/ SARS-S and four with a control, BHPIV3/Ctrl, administered via the respiratory tract. A SARS-coronavirus challenge was given to all monkeys 28 days after immunisation. Immunisation of animals with BHPIV3/SARS-S induced the production of SARS-coronavirus-neutralising serum antibodies, indicating that a systemic immune response resulted from mucosal immunisation. After challenge with SARS coronavirus, all monkeys in the control group shed SARS coronavirus, with shedding lasting 5-8 days. No viral shedding occurred in the group immunised with BHPIV3/SARS-S. A vectored mucosal vaccine expressing the SARS-coronavirus S protein alone may be highly effective in a single-dose format for the prevention of SARS.

Please choose payment method:






(PDF emailed within 0-6 h: $19.90)

Accession: 012330615

Download citation: RISBibTeXText

PMID: 15220033

DOI: 10.1016/s0140-6736(04)16501-x


Related references

Differential sensitivities of severe acute respiratory syndrome (SARS) coronavirus spike polypeptide enzyme-linked immunosorbent assay (ELISA) and SARS coronavirus nucleocapsid protein ELISA for serodiagnosis of SARS coronavirus pneumonia. Journal of Clinical Microbiology 43(7): 3054-3058, 2005

Intranasal vaccination of recombinant adeno-associated virus encoding receptor-binding domain of severe acute respiratory syndrome coronavirus (SARS-CoV) spike protein induces strong mucosal immune responses and provides long-term protection against SARS-CoV infection. Journal of Immunology 180(2): 948-956, 2008

Mouse studies of SARS coronavirus-specific immune responses to recombinant replication-defective adenovirus expressing SARS coronavirus N protein. Hong Kong Medical Journal 15(Suppl. 2): 33-36, 2009

Peptide mimicrying between SARS coronavirus spike protein and human proteins reacts with SARS patient serum. Journal of Biomedicine & Biotechnology 2008: 326464-326464, 2008

SARS coronavirus spike polypeptide DNA vaccine priming with recombinant spike polypeptide from Escherichia coli as booster induces high titer of neutralizing antibody against SARS coronavirus. Vaccine 23(42): 4959-4968, 2005

Baculovirus surface display of SARS coronavirus (SARS-CoV) spike protein and immunogenicity of the displayed protein in mice models. Dna and Cell Biology 25(12): 668-673, 2006

Mutagenesis of the transmembrane domain of the SARS coronavirus spike glycoprotein: refinement of the requirements for SARS coronavirus cell entry. Virology Journal 6: 230, 2009

A follow up study of total IgM, IgG, nucleoprotein and spike protein antibodies against severe acute respiratory syndrome (SARS) coronavirus in patients with SARS. Zhonghua Nei Ke Za Zhi 45(11): 896-899, 2006

Anti-SARS virus antibody responses against human SARS-associated coronavirus and animal SARS-associated coronavirus-like virus. Chinese Medical Journal 117(11): 1723-1725, 2004

Identification of immunodominant sites on the spike protein of severe acute respiratory syndrome (SARS) coronavirus: implication for developing SARS diagnostics and vaccines. Journal of Immunology 173(6): 4050-4057, 2004

Heterologous viral RNA export elements improve expression of severe acute respiratory syndrome (SARS) coronavirus spike protein and protective efficacy of DNA vaccines against SARS. Virology 363(2): 288-302, 2007

Replication of SARS coronavirus administered into the respiratory tract of African Green, rhesus and cynomolgus monkeys. Virology 330(1): 8, 2004

Immunogenicity difference between the SARS coronavirus and the bat SARS-like coronavirus spike (S) proteins. Biochemical and Biophysical Research Communications 387(2): 326-329, 2009

Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. Journal of Pathology 203(2): 622-630, 2004

Profiles of IgG antibodies to nucleocapsid and spike proteins of the SARS-associated coronavirus in SARS patients. Dna and Cell Biology 24(8): 521-527, 2005