Rat glomerular mesangial cells require laminin-9 to migrate in response to insulin-like growth factor binding protein-5

Berfield, A.K.; Hansen, K.M.; Abrass, C.K.

American Journal of Physiology. Cell Physiology 291(4): C589-C599

2006


ISSN/ISBN: 0363-6143
PMID: 16672690
DOI: 10.1152/ajpcell.00623.2005
Accession: 012483888

Download citation:  
Text
  |  
BibTeX
  |  
RIS

Article/Abstract emailed within 0-6 h
Payments are secure & encrypted
Powered by Stripe
Powered by PayPal

Abstract
Temporal and spatial differences in extracellular matrix play critical roles in cell proliferation, differentiation and migration. Different migratory stimuli use different substrates and receptors to achieve cell migration. To understand the mechanism of insulin-like growth factor binding protein-5 (IGFBP-5)-induced migration in mesangial cells, the roles of integrins and substrates were examined. IGFBP-5 induced an increase in mRNA expression for laminin (LN) chains lama4, lamb2, and lamc1, suggesting that LN-9 might be required for migration. Antibodies to the LNalpha(4) and LNbeta(2) chains, but not LNbeta(1), blocked IGFBP-5-induced migration. Anti-sense morpholino oligonucleotide inhibition of expression of LNalpha(4) substantially reduced expression of LN-8/9 (alpha(4)beta(1)gamma(1)/alpha(4)beta(2)gamma(1), 411/421) and prevented IGFBP-5-induced migration. Anti-sense inhibition of lamb2 reduced expression of LN-9. Absence of LN-9 prevented IGFBP-5-induced migration, which was not preserved by continued expression of LN-8. The requirement for LN-9 was further supported by studies of T98G cells, which express predominantly LN-8. IGFBP-5 had little effect on migration in these cells, but increased migration when T98G cells were plated on LN-8/9. IGFBP-5-mediated mesangial cell migration was inhibited by antibodies that block attachment to alpha(6)beta(1)-integrins but was unaffected by antibodies and disintegrins that block binding to other integrins. Furthermore, in cells with anti-sense inhibited expression of LN-9, integrin alpha(6)beta(1) was no longer detected on the cell surface. These studies suggest the specificity of mechanisms of migration induced by specific stimuli and for the first time demonstrate a unique function for LN-9 in mediating IGFBP-5-induced migration.