Structural basis of interdomain communication in the Hsc70 chaperone
Jiang, J.; Prasad, K.; Lafer, E.M.; Sousa, R.
Molecular Cell 20(4): 513-524
2005
ISSN/ISBN: 1097-2765 PMID: 16307916 DOI: 10.1016/j.molcel.2005.09.028
Accession: 012588383
Hsp70 family proteins are highly conserved chaperones involved in protein folding, degradation, targeting and translocation, and protein complex remodeling. They are comprised of an N-terminal nucleotide binding domain (NBD) and a C-terminal protein substrate binding domain (SBD).
PDF emailed within 0-6 h: $19.90
Related References
Le Coq, J.; Camacho-Artacho, M.; Velázquez, Jé.Vicente.; Santiveri, C.M.; Gallego, L.Heredia.; Campos-Olivas, Rón.; Dölker, N.; Lietha, D. 2017: Structural basis for interdomain communication in SHIP2 providing high phosphatase activity Elife 6Buchberger, A.; Gässler, C.S.; Büttner, M.; McMacken, R.; Bukau, B. 1999: Functional defects of the DnaK756 mutant chaperone of Escherichia coli indicate distinct roles for amino- and carboxyl-terminal residues in substrate and co-chaperone interaction and interdomain communication Journal of Biological Chemistry 274(53): 38017-38026
Han, W.; Christen, P. 2003: Interdomain communication in the molecular chaperone DnaK Biochemical Journal 369(Pt 3): 627-634
Buchberger, A.; Theyssen, H.; Schröder, H.; McCarty, J.S.; Virgallita, G.; Milkereit, P.; Reinstein, J.; Bukau, B. 1995: Nucleotide-induced conformational changes in the ATPase and substrate binding domains of the DnaK chaperone provide evidence for interdomain communication Journal of Biological Chemistry 270(28): 16903-16910
Ha, J.H.; Hellman, U.; Johnson, E.R.; Li, L.; McKay, D.B.; Sousa, M.C.; Takeda, S.; Wernstedt, C.; Wilbanks, S.M. 1997: Destabilization of peptide binding and interdomain communication by an E543K mutation in the bovine 70-kDa heat shock cognate protein, a molecular chaperone Journal of Biological Chemistry 272(44): 27796-27803
Zmijewski, Mł.A.; Skórko-Glonek, J.; Tanfani, F.; Banecki, B.; Kotlarz, A.; Macario, A.J.L.; Lipińska, B. 2007: Structural basis of the interspecies interaction between the chaperone DnaK(Hsp70) and the co-chaperone GrpE of archaea and bacteria Acta Biochimica Polonica 54(2): 245-252
Wilson, K.A.; Bouchard, J.J.; Peng, J.W. 2013: Interdomain interactions support interdomain communication in human Pin1 Biochemistry 52(40): 6968-6981
Marston, J.P.; Cliff, M.J.; Reed, M.A.C.; Blackburn, G.Michael.; Hounslow, A.M.; Craven, C.Jeremy.; Waltho, J.P. 2010: Structural tightening and interdomain communication in the catalytic cycle of phosphoglycerate kinase Journal of Molecular Biology 396(2): 345-360
Marszalkowski, M.; Willkomm, D.K.; Hartmann, R.K. 2008: Structural basis of a ribozyme's thermostability: P1-L9 interdomain interaction in RNase P RNA Rna 14(1): 127-133
Marszalkowski, M.; Willkomm, D., K.; Hartmann, R., K. 2008: Structural basis of a ribozyme's thermostability: P1-L9 interdomain interaction in RNase P RNA RNA (Cold Spring Harbor) 14(1): 127-133
Roy, M.D.; Wittenhagen, L.M.; Vozzella, B.E.; Kelley, S.O. 2004: Interdomain communication between weak structural elements within a disease-related human tRNA Biochemistry 43(2): 384-392
Ose, T.; Soler, N.; Rasubala, L.; Kuroki, K.; Kohda, D.; Fourmy, D.; Yoshizawa, S.; Maenaka, K. 2007: Structural basis for dynamic interdomain movement and RNA recognition of the selenocysteine-specific elongation factor SelB Structure 15(5): 577-586
Lu, H.; Golovanov, A.P.; Alcock, F.; Grossmann, J.G.ün.; Allen, S.; Lian, L.-Y.; Tokatlidis, K. 2004: The structural basis of the TIM10 chaperone assembly Journal of Biological Chemistry 279(18): 18959-18966
Sauer, F.G.; Fütterer, K.; Pinkner, J.S.; Dodson, K.W.; Hultgren, S.J.; Waksman, G. 1999: Structural basis of chaperone function and pilus biogenesis Science 285(5430): 1058-1061
English, C.M.; Adkins, M.W.; Carson, J.J.; Churchill, M.E.A.; Tyler, J.K. 2006: Structural basis for the histone chaperone activity of Asf1 Cell 127(3): 495-508
Bravo, J.P.K.; Bartnik, K.; Venditti, L.; Acker, J.; Gail, E.H.; Colyer, A.; Davidovich, C.; Lamb, D.C.; Tuma, R.; Calabrese, A.N.; Borodavka, A. 2021: Structural basis of rotavirus RNA chaperone displacement and RNA annealing Proceedings of the National Academy of Sciences of the United States of America 118(41)
Hung, D.L.; Pinkner, J.S.; Knight, S.D.; Hultgren, S.J. 1999: Structural basis of chaperone self-capping in P pilus biogenesis Proceedings of the National Academy of Sciences of the United States of America 96(14): 8178-8183
Huang, C.; Rossi, P.; Saio, T.; Kalodimos, C.G. 2016: Structural basis for the antifolding activity of a molecular chaperone Nature 537(7619): 202-206
Hung, D.L.; Knight, S.D.; Pinkner, J.S.; Hultgren, S.J. 1997: Structural basis and function of PapD chaperone dimerization Abstracts of the General Meeting of the American Society for Microbiology 97: 213
Ribeiro, E.d.A.; Beich-Frandsen, M.; Konarev, P.V.; Shang, W.; Vecerek, B.; Kontaxis, G.; Hämmerle, H.; Peterlik, H.; Svergun, D.I.; Bläsi, U.; Djinović-Carugo, K. 2012: Structural flexibility of RNA as molecular basis for Hfq chaperone function Nucleic Acids Research 40(16): 8072-8084