Section 14
Chapter 13,197

Structural and mutagenesis studies on the cytochrome c peroxidase from Rhodobacter capsulatus provide new insights into structure-function relationships of bacterial di-heme peroxidases

De Smet, L.; Savvides, S.N.; Van Horen, E.; Pettigrew, G.; Van Beeumen, J.J.

Journal of Biological Chemistry 281(7): 4371-4379


ISSN/ISBN: 0021-9258
PMID: 16314410
DOI: 10.1074/jbc.m509582200
Accession: 013196621

Download citation:  

Cytochrome c peroxidases (CCP) play a key role in cellular detoxification by catalyzing the reduction of hydrogen peroxide to water. The di-heme CCP from Rhodobacter capsulatus is the fastest enzyme (1060 s(-1)), when tested with its physiological cytochrome c substrate, among all di-heme CCPs characterized to date and has, therefore, been an attractive target to investigate structure-function relationships for this family of enzymes. Here, we combine for the first time structural studies with site-directed mutagenesis and spectroscopic studies of the mutant enzymes to investigate the roles of amino acid residues that have previously been suggested to be important for activity. The crystal structure of R. capsulatus at 2.7 Angstroms in the fully oxidized state confirms the overall molecular scaffold seen in other di-heme CCPs but further reveals that a segment of about 10 amino acids near the peroxide binding site is disordered in all four molecules in the asymmetric unit of the crystal. Structural and sequence comparisons with other structurally characterized CCPs suggest that flexibility in this part of the molecular scaffold is an inherent molecular property of the R. capsulatus CCP and of CCPs in general and that it correlates with the levels of activity seen in CCPs characterized, thus, far. Mutagenesis studies support the spin switch model and the roles that Met-118, Glu-117, and Trp-97 play in this model. Our results help to clarify a number of aspects of the debate on structure-function relationships in this family of bacterial CCPs and set the stage for future studies.

PDF emailed within 0-6 h: $19.90