Section 14
Chapter 13,569

The influence of oscillating dietary protein concentrations on finishing cattle. II. Nutrient retention and ammonia emissions

Archibeque, S.L.; Freetly, H.C.; Cole, N.A.; Ferrell, C.L.

Journal of Animal Science 85(6): 1496-1503


ISSN/ISBN: 1525-3163
PMID: 17264236
Accession: 013568488

Download citation:  

We hypothesized that oscillation of the dietary CP concentrations would improve efficiency of N use and reduce N loss to the environment. Charolais-cross steers (n = 8; 315 +/- 21 kg of BW) were used in a replicated 4 x 4 Latin square design. The steers were allowed ad libitum access to the following diets: 1) 9.1% CP (low), 2) 11.8% CP (medium), 3) 13.9% CP (high), or 4) low and high oscillated on a 48-h interval on each diet (oscillating). Dry matter intake did not differ among treatments (P = 0.46), but N intake differed (P < 0.01) from 94 (low) to 131 (medium), 142 (high), and 133 g/d (oscillating), as designed. Dry matter digestibility increased (P < 0.01) from 71.8% (low) to 75.8% (medium), 77.7% (high), and 77.5% (oscillating). Nitrogen digestibility increased (P < 0.01) from 62.2% (low) to 67.2% (medium) to 70.1% (high) and 70.9% (oscillating). Nitrogen retention was greater (P < 0.01) in steers fed oscillating (55.0 g/d) than in the steers fed low (34.8 g/ d) or high (40.2 g/d), but N retention of steers fed medium (49.8 g/d) differed (P = 0.02) only from that of steers fed low. Urinary urea N did not differ between steers fed medium (19.5 g/d) or oscillating (21.3 g/d) but was lowest (P < 0.01) for those fed low (8.2 g/d) and greatest for those fed high (39.2 g/d). Daily heat production (kcal/BW(0.75)) tended (P = 0.09) to be less for the steers fed low (177) than those fed medium (189), high (188), or oscillating (182). Cumulative in vitro ammonia volatilization from the manure of steers fed oscillating was lower (P < 0.01) for the initial 5 d of incubation than from manure of those fed medium, but there was no difference after 11 d of incubation. Additionally, there was a decrease (P < 0.01) in in vitro ammonia volatilization as protein concentration in the diet decreased from high to medium to low. These data indicate that oscillation of the dietary protein improved N retention of finishing steers compared with those in high and low N diets and that these changes were great enough to correspondingly alter ammonia volatilization from manure.

PDF emailed within 1 workday: $29.90