Studies on food-iron. 3. Biological availability of iron in rice (Oryza sativa) and ferric chloride as measured by the amount of iron retained in liver, spleen and body
Anonymous
Ann. Biochem. Exp. Med 12: 59-62
1952
Accession: 013842160
The Fe in cooked rice was less available to rats than a similar quantity of Fe given by mouth as ferric chloride.
PDF emailed within 1 workday: $29.90
Related References
Sen, D.P. 1952: Studies on food-iron. 5. Haemopoietic effect of iron in rice (Oryza sativa), wheat (Triticum vulgare), lentil (Lens esculenta), ferric-phytate, egg-yolk of duck, lecitho-vitellin protein and ferric chloride Ann. Biochem. Exp. Med 12: 103-110Ghosh, J.J. 1953: Studies on the comparative biological availability of iron from rice grains fortified with ferrous sulphate, ferric chloride and ferric orthophosphate Science and Culture 18(7): 340-341
Sen, D.P. 1952: Studies on food-iron. 4. Effect of proteins on the haemopoiesis due to the iron in rice (Oryza sativa) Ann. Biochem. Exp. Med 12: 67-74
Shahid, M.; Nayak, A.K.; Shukla, A.K.; Tripathi, R.; Kumar, A.; Raja, R.; Panda, B.B.; Meher, J.; Bhattacharyya, P.; Dash, D. 2014: Mitigation of Iron Toxicity and Iron, Zinc, and Manganese Nutrition of Wetland Rice Cultivars (Oryza sativa L.) Grown in Iron-Toxic Soil Clean-Soil Air Water 42(11): 1604-1609
Benckiser, G.; Santiago, S.; Neue, H.U.; Watanabe, I.; Ottow, J.C.G. 1984: Effect of fertilization on exudation dehydrogenase activity iron reducing populations and iron ion formation in the rhizosphere of rice oryza sativa in relation to iron toxicity Plant and Soil 79(3): 305-316
Hu, L.; Zeng, M.; Lei, M.; Liao, B.; Zhou, H. 2020: Effect of Zero-Valent Iron on Arsenic Uptake by Rice (Oryza sativa L.) and its Relationship with Iron, Arsenic, and Phosphorus in Soil and Iron Plaque Water Air and Soil Pollution 231(9): 481
Shiono, Y.; Hayashi, H.; Wakusawa, S.; Sanae, F.; Takikawa, T.; Yano, M.; Yoshioka, K.; Saito, H. 2001: Body iron stores and iron restoration rate in Japanese patients with chronic hepatitis C as measured during therapeutic iron removal revealed neither increased body iron stores nor effects of C282Y and H63D mutations on iron indices Nagoya Journal of Medical Science 64(1-2): 51-57
Benckiser, G.; Ottow, J.C.G.; Watanabe, I.; Santiago, S. 1983: Significance of nutrient supply for iron uptake and iron toxicity of wetland rice (Oryza sativa L.) Zeitschrift fur Acker- und Pflanzenbau 152(6): 426-440
Benckiser, G.; Ottow, J.C.G.; Watanabe, I.; Santiago, S. 1983: Significance of the nutrient supply for the iron uptake and iron toxification of wetland rice oryza sativa Zeitschrift fur Acker- und Pflanzenbau 152(6): 426-440
Zhu, C.Q.; Zhang, J.H.; Zhu, L.F.; Abliz, B.; Zhong, C.; Bai, Z.G.; Hu, W.J.; Sajid, H.; James, A.B.; Cao, X.C.; Jin, Q.Y. 2018: NH4+ facilitates iron reutilization in the cell walls of rice (Oryza sativa) roots under iron-deficiency conditions Environmental and Experimental Botany 151: 21-31
Zhang, J.; Wang, M. Y.; Wu, L. H. 2009: Can foliar iron-containing solutions be a potential strategy to enrich iron concentration of rice grains (Oryza sativa L.)? Acta Agriculturae Scandinavica Section B-Soil and Plant Science 59(5): 389-394
Zhou, S.; Liu, Z.; Sun, G.; Zhang, Q.; Cao, M.; Tu, S.; Xiong, S. 2022: Simultaneous reduction in cadmium and arsenic accumulation in rice (Oryza sativa L.) by iron/iron-manganese modified sepiolite Science of the Total Environment 810: 152189
Wang, B.; Wei, H.; Xue, Z.; Zhang, W-Hao. 2017: Gibberellins regulate iron deficiency-response by influencing iron transport and translocation in rice seedlings (oryza sativa) Annals of Botany 119(6): 945-956
Benckiser, G.O.tow, J.; Santiago, S.W.tanabe, I. 1983: Iron toxicity--influence of P-, K-, Ca- and Mg-fertilization on rhizoflora, redox potential and iron uptake by different rice varieties (Oryza sativa L.) Landwirtschaftliche Forschung 6(3-4): 285-299
Benckiser, G.; Ottow, J.C.G.; Santiago, S.; Watanabe, I. 1983: Iron toxicity - influence of P, K, Ca and Mg application on rhizoflora, redox potential and iron uptake by different rice (Oryza sativa L.) varieties Landwirtschaftliche Forschung 36(3/4): 285-299
Masuda, H.; Shimochi, E.; Hamada, T.; Senoura, T.; Kobayashi, T.; Aung, M.S.; Ishimaru, Y.; Ogo, Y.; Nakanishi, H.; Nishizawa, N.K. 2017: A new transgenic rice line exhibiting enhanced ferric iron reduction and phytosiderophore production confers tolerance to low iron availability in calcareous soil Plos one 12(3): E0173441
Wu, Q.; Liu, C.; Wang, Z.; Gao, T.; Liu, Y.; Xia, Y.; Yin, R.; Qi, M. 2022: Zinc regulation of iron uptake and translocation in rice (Oryza sativa L.): Implication from stable iron isotopes and transporter genes Environmental Pollution 297: 118818
Prade, K.; Ottow, J.C.G.; Jacq, V. 1986: Excessive iron uptake (iron toxicity) by wetland rice (Oryza sativa L.) on an acid sulphate soil in the Casamance/Senegal ILRI Publication 44: 150-162
Franken, P.; Wensing, T.; Schotman, A.J. 1981: The concentration of iron in the liver, spleen and plasma, and the amount of iron in bone marrow of horses Zentralblatt für Veterinarmedizin. Reihe A 28(5): 381-389
Nogiya, M.; Pandey, R.N.; Singh, B.; Singh, G.; Meena, M.C.; Datta, S.C.; Pradhan, S.; Meena, A.L. 2019: Responses of aerobically grown iron chlorosis tolerant and susceptible rice (Oryza sativa L.) genotypes to soil iron management in an Inceptisol Archives of Agronomy and Soil Science 65(10): 1387-1400