+ Site Statistics
+ Search Articles
+ PDF Full Text Service
How our service works
Request PDF Full Text
+ Follow Us
Follow on Facebook
Follow on Twitter
Follow on LinkedIn
+ Subscribe to Site Feeds
Most Shared
PDF Full Text
+ Translate
+ Recently Requested

Charge recombination between P700+ and A1- occurs directly to the ground state of P700 in a photosystem I core devoid of FX, FB, and FA



Charge recombination between P700+ and A1- occurs directly to the ground state of P700 in a photosystem I core devoid of FX, FB, and FA



Biochemistry 32(3): 849-857



The charge recombination between P700+ and electron acceptor A1- was studied by flash kinetic spectroscopy in a photosystem I core devoid of iron-sulfur centers FX, FB, and FA. We showed previously that the majority of the flash-induced absorption change at 820 nm decayed with a 10-microseconds half-time, which we assigned to the disappearance of the P700 triplet formed from the backreaction of P700+ with A1- [Warren, P.V., Parrett, K.G., Warden, J.T., & Golbeck, J.H. (1990) Biochemistry 29, 6545-6550]. We have reinvestigated this assignment in the near-UV, blue, and near-IR wavelength regions. The difference spectrum from 380 to 480 nm and from 720 to 910 nm shows that the P700+ A1- charge recombination is dominated by the P700 cation rather than the P700 triplet. Accordingly, the 10-microseconds kinetic transient represents the direct backreaction of P700+ with A1-, which repopulates the ground state of P700. This is unlike a P700-FA/FB complex where, in the presence of reduced FX-, FB-, and FA-, the P700+ A1- charge recombination populates the P700 triplet state [Sétif, P., & Bottin, H. (1989) Biochemistry 28, 2689-2697]. The A1 acceptor is highly susceptible to disruption by detergents in the absence of iron-sulfur center FX. The addition of 0.1% Triton X-100 to the P700-A1 core leads to a approximately 2.5-fold increase in the magnitude of the flash-induced absorption change at 780 nm; thereafter, 85% of the absorption change decays with a 25-ns half-time and 15% decays with a 3-microseconds half-time.

Please choose payment method:






(PDF emailed within 0-6 h: $19.90)

Accession: 017813456

Download citation: RISBibTeXText

PMID: 8422389

DOI: 10.1021/bi00054a016


Related references

FTIR study of the primary electron donor of photosystem I (P700) revealing delocalization of the charge in P700(+) and localization of the triplet character in (3)P700. Biochemistry 38(36): 11585-11592, 1999

Ftir Study of the Primary Electron Donor of Photosystem I (P700) Revealing Delocalization of the Charge in P700 + and Localization of the Triplet Character in 3 P700. Biochemistry 38(36): 11585-11592, 1999

Primary charge separation in photosystem I A picosecond two-step electrogenic charge separation connected with P700+A-0=- and P700-+A-1=-formation. Biological Chemistry Hoppe-Seyler 375(SPEC Suppl. 1): S8, 1994

Primary charge separation in photosystem I: a two-step electrogenic charge separation connected with P700+A0- and P700+A1- formation. Biochemistry 33(29): 8619-8624, 1994

Photosystem I photochemistry under highly reducing conditions: study of the P700 triplet state formation from the secondary radical pair (P700+-A1-). Biochimica et Biophysica Acta, Bioenergetics 1020(3): 232-238, 1990

Photosystem i photochemistry under highly reducing conditions study of the p700 triple state formation from the secondary radical pair p700 positive a 1 negative. Biochimica et Biophysica Acta 1020(3): 232-238, 1990

Modeling of the P700+ charge recombination kinetics with phylloquinone and plastoquinone-9 in the A1 site of photosystem I. Biophysical Journal 83(6): 2885-2897, 2002

Isolation and structural characterization of monomeric and trimeric photosystem I complexes (P700.FA/FB and P700.FX) from the cyanobacterium Synechocystis PCC 6803. Journal of Biological Chemistry 268(31): 23353-23360, 1993

FTIR difference spectroscopy in combination with isotope labeling for identification of the carbonyl modes of P700 and P700+ in photosystem I. Biophysical Journal 86(2): 1061-1073, 2004

Primary donor photo-oxidation in photosystem I: a re-evaluation of (P700(+) - P700) Fourier transform infrared difference spectra. Biochemistry 40(43): 12943-9, 2001

The two histidine axial ligands of the primary electron donor chlorophylls (P700) in photosystem I are similarly perturbed upon P700+ formation. Biochemistry 41(37): 11200-11210, 2002

FTIR spectroscopy of synechocystis 6803 mutants affected on the hydrogen bonds to the carbonyl groups of the PsaA chlorophyll of P700 supports an extensive delocalization of the charge in P700+. Biochemistry 43(26): 8380-8390, 2004

Fluorescence of p700 and antenna chlorophylls in photosystem i particles that contain 11 chlorophylls p700. Biochimica et Biophysica Acta 1100(3): 278-284, 1992

Characterization of a photosystem I core containing P700 and intermediate electron acceptor A1. Biochemistry 29(28): 6545-6550, 1990

The protease resistant core of the reaction center protein of photosystem i p700 chl a p1. Carlsberg Research Communications 53(5): 321-330, 1988