Immunotherapy of melanoma: a dichotomy in the requirement for IFN-c in vaccine-induced antitumor immunity versus adoptive immunotherapy
Winter, H.; Hu, H.M.; Mcclain, K.
Journal of Immunology 166(12): 70-80
2001
ISSN/ISBN: 0022-1767
Accession: 017951152
PDF emailed within 1 workday: $29.90
Related References
Winter, H.; Hu, H.-M.; McClain, K.; Urba, W.J.; Fox, B.A. 2001: Immunotherapy of Melanoma: A Dichotomy in the Requirement for Ifn- in Vaccine-Induced Antitumor Immunity Versus Adoptive Immunotherapy The Journal of Immunology 166(12): 7370-7380Winter, H.; Hu, H.M.; McClain, K.; Urba, W.J.; Fox, B.A. 2001: Immunotherapy of melanoma: a dichotomy in the requirement for IFN-gamma in vaccine-induced antitumor immunity versus adoptive immunotherapy Journal of Immunology 166(12): 7370-7380
Chen, W.R.; Singhal, A.K.; Liu, H.; Nordquist, R.E. 2001: Antitumor immunity induced by laser immunotherapy and its adoptive transfer Cancer Research 61(2): 459-461
Abrams, S.I.; Hodge, J.W.; McLaughlin, J.P.; Steinberg, S.M.; Kantor, J.A.; Schlom, J. 1997: Adoptive immunotherapy as an in vivo model to explore antitumor mechanisms induced by a recombinant anticancer vaccine Journal of ImmunoTherapy 20(1): 48-59
Zhang, S.; Wang, Q.; Li, W.-F.; Wang, H.-Y.; Zhang, H.-J.; Zhu, J.-J. 2004: Different antitumor immunity roles of cytokine activated T lymphocytes from naive murine splenocytes and from dendritic cells-based vaccine primed splenocytes: implications for adoptive immunotherapy Eksperimental'naia Onkologiia 26(1): 55-62
Zhang S.; Wang Q.; Li W.F.; Liang J.; Wang H.Y. 2003: Different antitumor immunity roles of cytokine activated T lymphocytes from naive murine splenocytes and from dendritic cells-based vaccine primed splenocytes Implications for adoptive immunotherapy Experimental Hematology (New York) 31(7 Suppl 1): 91
Riddell, S.R. 2007: Engineering antitumor immunity by T-cell adoptive immunotherapy HEMATOLOGY. American Society of Hematology. Education Program 2007: 250-256
Rodriguez-Garcia, A.; Lynn, R.C.; Poussin, M.; Eiva, M.A.; Shaw, L.C.; O'Connor, R.S.; Minutolo, N.G.; Casado-Medrano, V.; Lopez, G.; Matsuyama, T.; Powell, D.J. 2021: CAR-T cell-mediated depletion of immunosuppressive tumor-associated macrophages promotes endogenous antitumor immunity and augments adoptive immunotherapy Nature Communications 12(1): 877
Simon, T.; Fonteneau, J.-F.ço.; Grégoire, M. 2013: Requirement of tumor-associated antigen-specific CD4+ T cells for an efficient dendritic cell vaccine in antitumor immunotherapy ImmunoTherapy 5(6): 565-567
Moskalenko, M.; Pan, M.; Fu, Y.; de Moll, E.H.; Hashimoto, D.; Mortha, A.; Leboeuf, M.; Jayaraman, P.; Bernardo, S.; Sikora, A.G.; Wolchok, J.; Bhardwaj, N.; Merad, M.; Saenger, Y. 2015: Requirement for innate immunity and CD90⁺ NK1.1⁻ lymphocytes to treat established melanoma with chemo-immunotherapy Cancer Immunology Research 3(3): 296-304
Usui, A. 1990: Study on adoptive immunotherapy in patients with renal cell carcinoma. II. Plasmapheresis with adoptive immunotherapy using LAK cells and IL-2 Nihon Hinyokika Gakkai Zasshi. Japanese Journal of Urology 81(7): 1058-1064
Ammori, J.; Hamzeh, K.; Graor, H.; Kim, J. 2015: Requirement of Innate Immunity in Tumor-Bearing Mice Cured by Adoptive Immunotherapy Using Tumor-Draining Lymph Nodes Journal of Immunology Research 2015: 170852
Wang, C.; Chen, S.; Wu, Y.; Wu, D.; Wang, J.; Li, F. 2021: The combination therapy with EpCAM/CD3 BsAb and MUC-1/CD3 BsAb elicited antitumor immunity by T-cell adoptive immunotherapy in lung cancer International Journal of Medical Sciences 18(15): 3380-3388
Seya, T.; Shime, H.; Takeda, Y.; Tatematsu, M.; Takashima, K.; Matsumoto, M. 2015: Adjuvant for vaccine immunotherapy of cancer--focusing on Toll-like receptor 2 and 3 agonists for safely enhancing antitumor immunity Cancer Science 106(12): 1659-1668
Ta htinen, S.; Gro nberg-Va ha -Koskela, S.; Lumen, D.; Merisalo-Soikkeli, M.; Siurala, M.; Airaksinen, A.J.; Va ha -Koskela, M.; Hemminki, A. 2015: 35P * Combination immunotherapy with oncolytic adenovirus and adoptive T-cell transfer leads to systemic anti-tumor immunity and enhanced therapeutic efficacy in a preclinical melanoma model Annals of Oncology 26(Suppl 8): viii 11-viii 12
Walsh, S.R.; Bastin, D.; Chen, L.; Nguyen, A.; Storbeck, C.J.; Lefebvre, C.; Stojdl, D.; Bramson, J.L.; Bell, J.C.; Wan, Y. 2019: Type i IFN blockade uncouples immunotherapy-induced antitumor immunity and autoimmune toxicity Journal of Clinical Investigation 129(2): 518-530
Liang, Y.; Gong, H.; Li, Y.; Lu, Y.; Wu, X.; Zhang, X.; Ding, D.; Tang, X.; Tang, Q. 2021: Aggregation-Induced Emission-Based Vaccine Improves Potential Antitumor Immunotherapy Journal of Biomedical Nanotechnology 17(10): 2053-2061
Chen, W.R.; Jeong, S.W.; Lucroy, M.D.; Wolf, R.F.; Howard, E.W.; Liu, H.; Nordquist, R.E. 2003: Induced antitumor immunity against DMBA-4 metastatic mammary tumors in rats using laser immunotherapy International Journal of Cancer 107(6): 1053-1057
Shapira-Frommer, R.; Schachter, J. 2012: Adoptive immunotherapy of advanced melanoma Current Treatment Options in Oncology 13(3): 340-353
Sloan, A E.; Dansey, R; Zamorano, L; Barger, G; Hamm, C; Diaz, F; Baynes, R; Wood, G 2000: Adoptive immunotherapy in patients with recurrent malignant glioma: preliminary results of using autologous whole-tumor vaccine plus granulocyte-macrophage colonystimulating factor and adoptive transfer of anti-CD3activated lymphocytes Neurosurgical Focus 9(6): 1-8