Section 19
Chapter 18,014

Molecular mechanism of tissue-specific regulation of mouse renin gene expression by cAMP. Identification of an inhibitory protein that binds nuclear transcriptional factor

Horiuchi, M.; Nakamura, N.; Tang, S.S.; Barrett, G.; Dzau, V.J.

Journal of Biological Chemistry 266(24): 16247-16254


ISSN/ISBN: 0021-9258
PMID: 1651939
Accession: 018013396

Renin gene expression in the mouse kidney and submandibular gland (SMG) are differentially regulated by cAMP. In this study, we examined the potential molecular mechanism responsible for this tissue-specific regulation. 32P end-labeled synthetic oligonucleotide containing mouse renin cAMP-responsive element (CRE) was incubated with kidney nuclear extracts from either control or cAMP-treated mice and analyzed by gel mobility shift assay. Our results demonstrated that cAMP induced a nuclear protein which complexed with the CRE oligonucleotide in a specific manner. This nuclear protein-DNA binding was competed effectively by the oligonucleotide containing human chorionic gonadotropin alpha-subunit CRE but not by the mouse renin DNA fragment from which the CRE was deleted by site-directed mutagenesis. In contrast, no DNA-protein complex formation could be detected when this [32P]CRE oligonucleotide was incubated with the SMG nuclear extract from control or cAMP-treated mice. However, CRE-binding protein complex formation was demonstrated in the SMG nuclear extract when the incubation was performed in the presence of 0.8% sodium deoxycholate and 1.2% Nonidet P-40, detergents that dissociate protein-protein complexes. Furthermore, in the absence of deoxycholate, we observed that SMG nuclear extract attenuated the binding of the kidney CRE-binding protein to mouse renin CRE in a dose-dependent manner and this inhibitory effect of SMG nuclear extract disappeared in the presence of sodium deoxycholate. This inhibitory nuclear protein in SMG is specific for CRE-binding protein since it does not affect nuclear protein binding to synthetic DNA oligonucleotides of human collagenase AP-1 and human metallothionein AP-2. Our data further suggest that inhibitory nuclear protein is present in lower quantities in other extrarenal tissues, i.e. testes, liver, brain, heart, but is not detectable in the kidney. Taken together, these results suggest that the SMG and certain extrarenal tissues contain nuclear trans-acting factor(s) that interact with CRE-binding protein, thereby interfering with its binding to mouse renin CRE. The presence of this inhibitory protein in the mouse SMG nucleus may contribute to the tissue-specific regulation of the renin gene expression by cAMP.

PDF emailed within 1 workday: $29.90