EurekaMag
+ Translate
+ Most Popular
Cunninghamia lanceolata plantations in China
Mammalian lairs in paleo ecological studies and palynology
Studies on technological possibilities in utilization of anhydrous milk fat for production of recombined butter-like products
Should right-sided fibroelastomas be operated upon?
Large esophageal lipoma
Apoptosis in the mammalian thymus during normal histogenesis and under various in vitro and in vivo experimental conditions
Poissons characoides nouveaux ou non signales de l'Ilha do Bananal, Bresil
Desensitizing efficacy of Colgate Sensitive Maximum Strength and Fresh Mint Sensodyne dentifrices
Administration of fluid by subcutaneous infusion: revival of a forgotten method
Tundra mosquito control - an impossible dream?
Schizophrenia for primary care providers: how to contribute to the care of a vulnerable patient population
Geochemical pattern analysis; method of describing the Southeastern limestone regional aquifer system
Incidence of low birth weights in a hospital of Mexico City
Tabanidae
Graded management intensity of grassland systems for enhancing floristic diversity
Microbiology and biochemistry of cheese and fermented milk
The ember tetra: a new pygmy characid tetra from the Rio das Mortes, Brazil, Hyphessobrycon amandae sp. n. (Pisces, Characoidei)
Risk factors of contrast-induced nephropathy in patients after coronary artery intervention
Renovation of onsite domestic wastewater in a poorly drained soil
Observations of the propagation velocity and formation mechanism of burst fractures caused by gunshot
Systolic blood pressure in a population of infants in the first year of life: the Brompton study
Haematological studies in rats fed with metanil yellow
Studies on pasteurellosis. I. A new species of Pasteurella encountered in chronic fowl cholera
Dormancy breaking and germination of Acacia salicina Lindl. seeds
therapy of lupus nephritis. a two-year prospective study

Nuclear localization of mitogen-activated protein kinase kinase 1 (MKK1) is promoted by serum stimulation and G2-M progression. Requirement for phosphorylation at the activation lip and signaling downstream of MKK


Nuclear localization of mitogen-activated protein kinase kinase 1 (MKK1) is promoted by serum stimulation and G2-M progression. Requirement for phosphorylation at the activation lip and signaling downstream of MKK



Journal of Biological Chemistry 274(10): 6168-6174



ISSN/ISBN: 0021-9258

PMID: 10037701

DOI: 10.1074/jbc.274.10.6168

Stimulation of mammalian cells results in subcellular relocalization of Ras pathway enzymes, in which extracellular signal-regulated protein kinases rapidly translocate to nuclei. In this study, we define conditions for nuclear localization of mitogen-activated protein kinase kinase 1 (MKK1) by examining effects of perturbing the nuclear export signal (NES), the regulatory phosphorylation sites Ser218 and Ser222, and a regulatory domain at the N terminus. After disrupting the NES (Delta32-37), nuclear uptake of MKK was enhanced when quiescent cells were activated with serum-phorbol 12-myristate 13-acetate or BXB-Raf-1 cotransfection. Uptake was enhanced by mutation of Ser218 and Ser222 to Glu and Asp, respectively, and blocked by mutation of these residues to Ala, although mutation of Lys97 to Met, which renders MKK catalytically inactive, did not interfere with uptake. Therefore, nuclear uptake of MKK requires incorporation of phosphate or negatively charged residues at the activation lip but not enzyme activity. On the other hand, uptake of an active MKK mutant with disrupted NES (Delta32-51) was elevated in quiescent as well as stimulated cells, and pretreatment of cells with the MKK inhibitor 1,4-diamino-2, 3-dicyano-1,4-bis[2-aminophenylthio]butadiene blocked nuclear uptake. Thus, signaling downstream of MKK is also necessary for translocation. Finally, wild type MKK containing an intact NES translocates to nuclei during mitosis before envelope breakdown. Comparison of mutants with Ser to Glu and Asp or Ala substitutions indicates that Ser phosphorylation is also required for mitotic nuclear uptake of MKK.

Please choose payment method:






(PDF emailed within 0-6 h: $19.90)

Accession: 018032436

Download citation: RISBibTeXText

Related references

Interleukin-1-induced intracellular signaling pathways converge in the activation of mitogen-activated protein kinase and mitogen-activated protein kinase-activated protein kinase 2 and the subsequent phosphorylation of the 27-kilodalton heat shock protein in monocytic cells. Molecular Pharmacology 46(6): 1077-1083, 1994

Tumor necrosis factor signaling to stress-activated protein kinase (SAPK)/Jun NH2-terminal kinase (JNK) and p38. Germinal center kinase couples TRAF2 to mitogen-activated protein kinase/ERK kinase kinase 1 and SAPK while receptor interacting protein associates with a mitogen-activated protein kinase kinase kinase upstream of MKK6 and p38. Journal of Biological Chemistry 273(35): 22681-22692, 1998

Feedback phosphorylation of the yeast a-factor receptor requires activation of the downstream signaling pathway from G protein through mitogen-activated protein kinase. Molecular and Cellular Biology 20(2): 563-574, 2000

Phosphorylation and activation of mitogen- and stress-activated protein kinase-1 in adult rat cardiac myocytes by G-protein-coupled receptor agonists requires both extracellular-signal-regulated kinase and p38 mitogen-activated protein kinase. Biochemical Journal 365(Pt 3): 757-763, 2002

Tumor necrosis factor (TNF) receptor 1 signaling downstream of TNF receptor-associated factor 2. Nuclear factor kappaB (NFkappaB)-inducing kinase requirement for activation of activating protein 1 and NFkappaB but not of c-Jun N-terminal kinase/stress-activated protein kinase. Journal of Biological Chemistry 272(42): 26079-26082, 1997

Tumor necrosis factor (TNF) receptor 1 signaling downstream of TNF receptor-associated factor 2. Nuclear factor kB (NFkB)-inducing kinase requirement for activation of activating protein 1 and NFkB but not of c-Jun N-terminal kinase/stress-activated protein kinase. The Journal of Biological Chemistry 272: 079-82, 1997

C-Jun N-terminal kinase binding domain-dependent phosphorylation of mitogen-activated protein kinase kinase 4 and mitogen-activated protein kinase kinase 7 and balancing cross-talk between c-Jun N-terminal kinase and extracellular signal-regulated kinase pathways in cortical neurons. Neuroscience 159(1): 94-103, 2009

Phosphorylation of WAVE downstream of mitogen-activated protein kinase signaling. Journal of Biological Chemistry 274(39): 27605-27609, 1999

Analysis of mitogen-activated protein kinase phosphorylation in response to stimulation of histidine kinase signaling pathways in Neurospora. Methods in Enzymology 471: 319-334, 2010

Protein kinase calpha but not p44/42 mitogen-activated protein kinase, p38, or c-Jun NH(2)-terminal kinase is required for intercellular adhesion molecule-1 expression mediated by interleukin-1beta: involvement of sequential activation of tyrosine kinase, nuclear factor-kappaB-inducing kinase, and IkappaB kinase 2. Molecular Pharmacology 58(6): 1479-1489, 2000

Phosphorylation of the kinase interaction motif in mitogen-activated protein (MAP) kinase phosphatase-4 mediates cross-talk between protein kinase A and MAP kinase signaling pathways. Journal of Biological Chemistry 286(44): 38018-38026, 2011

Activation of Nf-B in Virus-Infected Macrophages Is Dependent on Mitochondrial Oxidative Stress and Intracellular Calcium: Downstream Involvement of the Kinases Tgf--Activated Kinase 1, Mitogen-Activated Kinase/Extracellular Signal-Regulated Kinase Kinase 1, and Ib Kinase. The Journal of Immunology 170(12): 6224-6233, 2003

Activation of NF-kB in Virus-Infected Macrophages Is Dependent on Mitochondrial Oxidative Stress and Intracellular Calcium: Downstream Involvement of the Kinases TGF-b-Activated Kinase 1, Mitogen-Activated Kinase/Extracellular Signal-Regulated Kinase Kinase 1, and IkB Kinase. Journal of Immunology 170(12): 24-33, 2003

Early activation of mitogen-activated protein kinase kinase, extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, and c-Jun N-terminal kinase in response to binding of simian immunodeficiency virus to Jurkat T cells expressing CCR5 receptor. Virology 252(1): 210-217, 1998

Mammalian mitogen-activated protein kinase kinase kinase (MEKK) can function in a yeast mitogen-activated protein kinase pathway downstream of protein kinase C. Proceedings of the National Academy of Sciences of the United States of America 91(11): 4925-4929, 1994