Home
  >  
Section 21
  >  
Chapter 20,195

Tectonic and paleoclimatic significance of a prominent Upper Pennsylvanian (Virgilian/ Stephanian) weathering profile, Iowa and Nebraska, USA

Joeckel, R.M.

Palaeogeography, Palaeoclimatology, Palaeoecology 118(3-4): 159-179

1995


ISSN/ISBN: 0031-0182
DOI: 10.1016/0031-0182(95)00005-8
Accession: 020194094

A Virgilian (Stephanian) weathering profile up to 4 m deep, containing a paleosol (basal Rakes Creek paleosol) in the basal mudstone of the Rakes Creek Member and karstified marine sediments in the Ost, Kenosha, and Avoca members below, is restricted to southeastern Nebraska (specifically the Weeping Water Valley) and the Missouri River Valley bluffs of adjacent easternmost Iowa. This weathering profile, informally referred to as the Weeping Water weathering profile, disappears farther eastward into the shallow Forest City Basin in southwestern Iowa. Weeping Water weathering profile features are prominent in comparison to other Midcontinent Pennsylvanian subaerial exposure surfaces, indicating prolonged subaerial exposure, relatively high elevation, and a marked drop in water table along the Nemaha Uplift in southeastern Nebraska. Eastward, on the margin of the Forest City Basin, the basal Rakes Creek paleosol and underlying karst are thinner and relatively poorly developed; paleosol characteristics indicate formation on lower landscape positions. Comparative pedology, the contrasting of paleosol variability, morphology, and micromorphology between different paleosols in the same regional succession, provides a basis for interpreting the larger significance of the basal Rakes Creek paleosol. The stratigraphically older upper Lawrence and Snyderville paleosols in the same area are significantly different in patterns of lateral variability and overall soil characteristics. Weaker eustatic control and stronger tectonic activity may explain the greater west-east variability (and eventual eastward disappearance) of the basal Rakes Creek paleosol. Differences in soil characteristics between the Vertisol-like upper Lawrence and Snyderville paleosols and the non-Vertisol-like basal Rakes Creek paleosol appear to be due to climate change, particularly a shift from more seasonal to more uniform rainfall. This climate change hypothesis is compatible with overall Virgilian stratigraphic trends in the northern Midcontinent outcrop area.

PDF emailed within 0-6 h: $19.90