+ Site Statistics
References:
54,258,434
Abstracts:
29,560,870
PMIDs:
28,072,757
+ Search Articles
+ Subscribe to Site Feeds
Most Shared
PDF Full Text
+ PDF Full Text
Request PDF Full Text
+ Follow Us
Follow on Facebook
Follow on Twitter
Follow on LinkedIn
+ Translate
+ Recently Requested

Bare silica nanoparticles as concentrating and affinity probes for rapid analysis of aminothiols, lysozyme and peptide mixtures using atmospheric-pressure matrix-assisted laser desorption/ionization ion trap and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry



Bare silica nanoparticles as concentrating and affinity probes for rapid analysis of aminothiols, lysozyme and peptide mixtures using atmospheric-pressure matrix-assisted laser desorption/ionization ion trap and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry



Rapid Communications in Mass Spectrometry 22(3): 283-290



The analysis of peptide mixtures from urine and plasma samples using bare (uncapped) SiO2 nanoparticles (NPs) with atmospheric-pressure matrix-assisted laser desorption/ionization mass spectrometry (AP-MALDI-MS) has been reported. The method was based on the adsorption of positively charged peptides on the surface of negatively charged SiO2 NPs through the electrostatic force of attraction. The adsorption on the surface of SiO2 NPs caused enhancement of ionization efficiency of analytes and subsequently increased the signal intensity of peptides. Maximum signal intensity was obtained at optimized concentration of SiO2 NPs and pH of the aqueous solution. The limits of detection (LODs) obtained for different peptides in deionized water with and without using SiO2 NPs were in the range 4.7-360 nM and 0.1-18.0 microM, respectively. The sensitivity of the proposed method was 21-53-fold better than conventional use of AP-MALDI-MS. In addition, linearity in the range 9.5-95 nM was obtained for the peptide angiotensin-II in deionized water with a correlation of estimation of 0.992 using an internal standard. The proposed method provided a simple way to facilitate the ionization of peptides, reduce sample complexity and increase the tolerance to salts and surfactants in the analysis of biological samples. The applicability of the present method was also demonstrated in the real-world sample analysis of aminothiols and lysozyme using MALDI-time-of-flight (TOF)-MS.

(PDF emailed within 0-6 h: $19.90)

Accession: 020661248

Download citation: RISBibTeXText

PMID: 18186457

DOI: 10.1002/rcm.3363


Related references

Applications of silver nanoparticles capped with different functional groups as the matrix and affinity probes in surface-assisted laser desorption/ionization time-of-flight and atmospheric pressure matrix-assisted laser desorption/ionization ion trap mass spectrometry for rapid analysis of sulfur drugs and biothiols in human urine. Rapid Communications in Mass Spectrometry 22(18): 2863-2872, 2008

Reverse micellar microextraction for rapid analysis of thiol-containing peptides and amino acids by atmospheric-pressure matrix-assisted laser desorption/ionization ion trap and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry 22(9): 1437-1444, 2008

Chemically-assisted fragmentation combined with multi-dimensional liquid chromatography and matrix-assisted laser desorption/ionization post source decay, matrix-assisted laser desorption/ionization tandem time-of flight or matrix-assisted laser desorption/ionization tandem mass spectrometry for improved sequencing of tryptic peptides. European Journal of Mass Spectrometry 11(2): 169-179, 2005

Evaluation of combined matrix-assisted laser desorption/ionization time-of-flight and matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry experiments for peptide mass fingerprinting analysis. Rapid Communications in Mass Spectrometry 25(13): 1881-1892, 2011

Characterization of covalently inhibited extracellular lipase from Streptomyces rimosus by matrix-assisted laser desorption/ionization time-of-flight and matrix-assisted laser desorption/ionization quadrupole ion trap reflectron time-of-flight mass spectrometry: localization of the active site serine. Journal of Mass Spectrometry 39(12): 1474-1483, 2004

Identification of proteins separated by one-dimensional sodium dodecyl sulfate/polyacrylamide gel electrophoresis with matrix-assisted laser desorption/ionization ion trap mass spectrometry; comparison with matrix-assisted laser desorption/ionization time-of-flight mass fingerprinting. Rapid Communications in Mass Spectrometry 17(17): 1995-2004, 2003

Importance of matrix:analyte ratio for buffer tolerance using 2,5-dihydroxybenzoic acid as a matrix in matrix-assisted laser desorption/ionization-Fourier transform mass spectrometry and matrix-assisted laser desorption/ionization-time of flight. Journal of the American Society for Mass Spectrometry 9(8): 805-813, 1998

Identification of acetylation and methylation sites of histone H3 from chicken erythrocytes by high-accuracy matrix-assisted laser desorption ionization-time-of-flight, matrix-assisted laser desorption ionization-postsource decay, and nanoelectrospray ionization tandem mass spectrometry. Analytical Biochemistry 306(2): 259-269, July 15, 2002

Comparison of ZnS semiconductor nanoparticles capped with various functional groups as the matrix and affinity probes for rapid analysis of cyclodextrins and proteins in surface-assisted laser desorption/ionization time-of-flight mass spectrometry. Analytical Chemistry 80(24): 9681-9688, 2008

How Suitable is Matrix-Assisted Laser Desorption/Ionization-Time-of-Flight for Metabolite Imaging from Clinical Formalin-Fixed and Paraffin-Embedded Tissue Samples in Comparison to Matrix-Assisted Laser Desorption/Ionization-Fourier Transform Ion Cyclotron Resonance Mass Spectrometry?. Analytical Chemistry 88(10): 5281-5289, 2018

Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry as a rapid and reliable technique for directly evaluating bactericidal activity: probing the critical concentration of ZnO nanoparticles as affinity probes. Analytical Chemistry 82(23): 9617-9621, 2011

Rapid analysis of antibiotic-containing mixtures from fermentation broths by using liquid chromatography-electrospray ionization-mass spectrometry and matrix-assisted laser desorption ionization-time-of-flight-mass spectrometry. Journal of the American Society for Mass Spectrometry 7(12): 1227-1237, 1996

Atmospheric pressure matrix-assisted laser desorption/ionization with analysis by ion mobility time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry 18(8): 882-888, 2004

Laser ablation synthesis of new phosphorus nitride clusters from α-P3N5 via Laser Desorption Ionization and Matrix Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry. Rapid Communications in Mass Spectrometry 25(7): 917-924, 2011

Rapid matrix-assisted laser desorption/ionization time-of-flight mass spectrometry imaging with scanning desorption laser beam. Analytical Chemistry 86(2): 982-986, 2014