Section 21
Chapter 20,865

Differential Reactivity of [beta]-Carotene Isomers from Dunaliella bardawil Toward Oxygen Radicals

Jimenez, C..; Pick, U..

Plant Physiology 101(2): 385-390


ISSN/ISBN: 1532-2548
PMID: 12231693
DOI: 10.1104/pp.101.2.385
Accession: 020864538

Download citation:  

Full Text Article emailed within 0-6 h
Payments are secure & encrypted
Powered by Stripe
Powered by PayPal

Dunaliella bardawil accumulates massive amounts of [beta]-carotene in two isoforms, a 9-cis and an all-trans stereoisomer, when grown under high irradiance, as a means to protect the cells against photoinhibition (A. Ben-Amotz, A. Shaish, M. Avron [1989] Plant Physiol 91: 1040-1043). The purpose of this work has been to find out if the mechanism of protection involves scavenging of reactive oxygen species. For this purpose high- and low-[beta]-carotene-containing cells were compared with respect to their sensitivity to several external oxidants [H2O2, methyl viologen, rose bengal, and 2,2[prime]-azobis(2-amidinopropane)HCl]. All oxidants induce a light-stimulated degradation of [beta]-carotene and of chlorophyll. The degradation of [beta]-carotene precedes that of chlorophyll, indicating that it is more reactive toward oxidants. The 9-cis [beta]-carotene is degraded faster than the all-trans stereoisomer when exposed to oxidants, both in intact cells and in isolated [beta]-carotene globules, indicating that it is a more effective scavenger of reactive oxygen species. Comparison of the sensitivity to different oxidants, between high- and low-[beta]-carotene-containing cells, reveals similar rates of chlorophyll and [beta]-carotene degradation in the two populations. Survival tests toward H2O2 and rose bengal show that high-[beta]-carotene cells have a similar sensitivity toward H2O2 but are more resistant toward rose bengal, a photoactivated generator of singlet oxygen, possibly due to masking of the latter by [beta]-carotene. These results suggest that the protection mechanism of massively accumulated [beta]-carotene in Dunaliella against photoinhibition is not due to scavenging of reactive oxygen species.