+ Site Statistics
+ Search Articles
+ PDF Full Text Service
How our service works
Request PDF Full Text
+ Follow Us
Follow on Facebook
Follow on Twitter
Follow on LinkedIn
+ Subscribe to Site Feeds
Most Shared
PDF Full Text
+ Translate
+ Recently Requested

Enzymes and proteins from extremophiles as hyperstable probes in nanotechnology: the use of D-trehalose/D-maltose-binding protein from the hyperthermophilic archaeon Thermococcus litoralis for sugars monitoring



Enzymes and proteins from extremophiles as hyperstable probes in nanotechnology: the use of D-trehalose/D-maltose-binding protein from the hyperthermophilic archaeon Thermococcus litoralis for sugars monitoring



Extremophiles 12(1): 69-73



The D-trehalose/D-maltose-binding protein (TMBP), a monomeric protein of 48 kDa, is one component of the trehalose and maltose (Mal) uptake system. In the hyperthermophilic archaeon Thermococcus litoralis, this is mediated by a protein-dependent ATP-binding cassette system transporter. The gene coding for a thermostable TMBP from the archaeon T. litoralis has been cloned, and the recombinant protein has been expressed in E. coli. The recombinant TMBP has been purified to homogeneity and characterized. It exhibits the same functional and structural properties as the native one. In fact, it is highly thermostable and binds sugars, such as maltose, trehalose and glucose, with high affinity. In this work, we have immobilized TMBP on a porous silicon wafer. The immobilization of TMBP to the chip was monitored by reflectivity and Fourier Transformed Infrared spectroscopy. Furthermore, we have tested the optical response of the protein-Chip complex to glucose binding. The obtained data suggest the use of this protein for the design of advanced optical non-consuming analyte biosensors for glucose detection.

Please choose payment method:






(PDF emailed within 0-6 h: $19.90)

Accession: 020973356

Download citation: RISBibTeXText

PMID: 17221161

DOI: 10.1007/s00792-006-0058-6


Related references

Enzymes and proteins from extremophiles as hyperstable probes in nanotechnology: the use of D-trehalose/D-maltose-binding protein from monitoring. 2008

D-trehalose/D-maltose-binding protein from the hyperthermophilic archaeon Thermococcus litoralis: the binding of trehalose and maltose results in different protein conformational states. Proteins 63(4): 754-767, 2006

The crystal structure of a liganded trehalose/maltose-binding protein from the hyperthermophilic Archaeon Thermococcus litoralis at 1.85 A. Journal of Molecular Biology 305(4): 905-915, 2001

Temperature modulates binding specificity and affinity of the d-trehalose/d-maltose-binding protein from the hyperthermophilic archaeon Thermococcus litoralis. Biochimica et Biophysica Acta 1774(5): 540-544, 2007

Molecular adaptation strategies to high temperature and thermal denaturation mechanism of the D-trehalose/D-maltose-binding protein from the hyperthermophilic archaeon Thermococcus litoralis. Proteins 67(4): 1002-1009, 2007

Archaeal binding protein-dependent ABC transporter: molecular and biochemical analysis of the trehalose/maltose transport system of the hyperthermophilic archaeon Thermococcus litoralis. Journal of Bacteriology 180(3): 680-689, 1998

High-affinity maltose/trehalose transport system in the hyperthermophilic archaeon Thermococcus litoralis. Journal of Bacteriology 178(16): 4773-4777, 1996

Purification and characterization of the heterologously expressed trehalose/maltose ABC transporter complex of the hyperthermophilic archaeon Thermococcus litoralis. European Journal of Biochemistry 268(14): 4011-4018, 2001

TrmB, a sugar-specific transcriptional regulator of the trehalose/maltose ABC transporter from the hyperthermophilic archaeon Thermococcus litoralis. Journal of Biological Chemistry 278(2): 983-990, 2003

Pressure effects on the structure and stability of the hyperthermophilic trehalose/maltose-binding protein from Thermococcus litoralis. Journal of Physical Chemistry. B 113(38): 12804-8, 2009

Molecular and biochemical analysis of MalK, the ATP-hydrolyzing subunit of the trehalose/maltose transport system of the hyperthermophilic archaeon Thermococcus litoralis. Journal of Biological Chemistry 274(29): 20259-20264, 1999

Maltose metabolism in the hyperthermophilic archaeon Thermococcus litoralis: purification and characterization of key enzymes. Journal of Bacteriology 181(11): 3358-3367, 1999

Stability of sugar-binding proteins: D-galactose/D-glucose-binding protein from Escherichia coli and trehalose/maltose-binding protein from Thermococcus litoralis. Tsitologiia 52(11): 950-954, 2010

Maltose metabolism in the hyperthermophilic archaeon Thermococcus litoralis. Abstracts of the General Meeting of the American Society for Microbiology 100: 433, 2000

TreT, a novel trehalose glycosyltransferring synthase of the hyperthermophilic archaeon Thermococcus litoralis. Journal of Biological Chemistry 279(46): 47890-7, 2004