Evaluation of long-term soil management practices using key indicators and soil quality indices in a semi-arid tropical Alfisol

Sharma, K.L.; Grace, J.K.; Mandal, U.-Kumar; Gajbhiye, P., N.; Srinivas, K.; Korwar, G.R.; Bindu, V.H.; Ramesh, V.; Ramachandran, K.; Yadav, S.K.

Australian Journal of Soil Research 46(4): 368-377


DOI: 10.1071/sr07184
Accession: 022598327

Download citation:  

Article/Abstract emailed within 0-6 h
Payments are secure & encrypted
Powered by Stripe
Powered by PayPal

Alfisol soils of rainfed semi-arid tropics (SAT) are degrading due to several physical, chemical, and biological constraints. Appropriate soil-nutrient management practices may help to check further soil degradation. A long-term experiment comprising tillage and conjunctive nutrient use treatments under a sorghum (Sorghum bicolor (L.) Moench)-mung bean (Vigna radiata (L.) Wilkzec) system was conducted during 1998-05 on SAT Alfisols (Typic Haplustalf) at the Central Research Institute for Dryland Agriculture, Hyderabad. The study evaluated soil and nutrient management treatments for their long-term influence on soil quality using key indicators and soil quality indices (SQI). Of the 21 soil quality parameters considered for study, easily oxidisable N (KMnO4 oxidisable-N), DTPA extractable Zn and Cu, microbial biomass carbon (MBC), mean weight diameter (MWD) of soil aggregates, and hydraulic conductivity (HC) played a major role in influencing the soil quality and were designated as the key indicators of 'soil quality' for this system. The SQI obtained by the integration of key indicators varied from 0.66 (unamended control) to 0.83 (4 Mg compost + 20 kg N as urea) under conventional tillage (CT), and from 0.66 (control) to 0.89 (4 Mg compost + 2 Mg gliricidia loppings) under reduced tillage (RT). Tillage did not influence the SQI, whereas the conjunctive nutrient-use treatments had a significant effect. On an average, under both CT and RT, the sole organic treatment improved the soil quality by 31.8% over the control. The conjunctive nutrient-use treatments improved soil quality by 24.2-27.2%, and the sole inorganic treatment by 18.2% over the control. Statistically, the treatments improved soil quality in the following order: 4 Mg compost + 2 Mg gliricidia loppings > 2 Mg Gliricidia loppings + 20 kg N as urea = 4 Mg compost + 20 kg N as urea > 40 kg N as urea. The percentage contribution of the key indicators towards the SQI was: MBC (28.5%), available N (28.6%), DTPA-Zn (25.3%), DTPA-Cu (8.6%), HC (6.1%), and MWD (2.9%). The functions predicting the changes in yield and sustainability yield index with a given change in SQI were also determined.