Propagation of an acceleration wave in layers of isotropic solids at finite temperatures
C.C.rrò; G.V.lenti; M.S.giyama; S.T.niguchi
Wave Motion 46(2): 108-121
2009
ISSN/ISBN: 0165-2125 DOI: 10.1016/j.wavemoti.2008.09.003
Accession: 023426543
PDF emailed within 0-6 h: $19.90
Related References
Yadav, R.; Singh, A.; Chattopadhyay, A. 2018: Analytical study on the propagation of rectilinear semi-infinite crack due to Love-type wave propagation in a structure with two dissimilar transversely isotropic layers Engineering Fracture Mechanics 199: 201-219Curro, C.; Sugiyama, M.; Suzumura, H.; Valenti, G. 2007: Weak shock waves in isotropic solids at finite temperatures up to the melting point Continuum Mechanics and Thermodynamics 18(7-8): 395-409
Mirzade, F. 2015: Plane wave propagation in transversely isotropic laser-excited solids Physica B: Condensed Matter 461: 17-22
Simionescu-Panait, O. 2001: The electrostrictive effect on wave propagation in isotropic solids subjected to initial fields Mechanics Research Communications 28(6): 685-691
Cormack, J.M. 2021: Plane nonlinear shear wave propagation in transversely isotropic soft solids Journal of the Acoustical Society of America 150(4): 2566
Tsingas, C.; Vafidis, A.; Kanasewich, E.R. 1990: Elastic wave propagation in transversely isotropic metra using finite differences Geophysical Prospecting 38(8): 933-949
Tsingas, C.; Vafidis, A.; Kanasewich Ernest, R. 1990: Elastic wave propagation in transversely isotropic media using finite differences Geophysical Prospecting: 933-949
Calvet Marie; Chevrot Sebastien; Souriau Anne 2006: P-wave propagation in transversely isotropic media; I, Finite frequency theory Physics of the Earth and Planetary Interiors 156(1-2): 12-20
Nguyen Huu, V.I.E.M. 1992: Isothermal and adiabatic flow laws of metallic elastic-plastic solids at finite strains and propagation of acceleration waves Archives of Mechanics 44(5-6): 595-602
Christopher Juhlin 1995: Finite-difference elastic wave propagation in 2D heterogeneous transversely isotropic media Geophysical Prospecting 43(6): 843-858
Tsingas, C.; Vafidis, A.; Kanasewich, E.R. 1990: Elastic wave propagation in transversely isotropic media using finite differences - Etude de la propagation des ondes élastiques dans des milieux transversalement isotropes utilisant les différences finies Eaeg Meting 50 (the Hague 1989-08) 38(8): 933-949
Rajagopal, P.; Drozdz, M.; Skelton, E.A.; Lowe, M.J.S.; Craster, R.V. 2012: On the use of absorbing layers to simulate the propagation of elastic waves in unbounded isotropic media using commercially available Finite Element packages Ndt and e International 51: 30-40
Casadei, F.; Rimoli, J.; Ruzzene, M. 2016: Multiscale finite element analysis of wave propagation in periodic solids Finite Elements in Analysis and Design 108: 81-95
Akyurtlu, A.; Werner, D.H. 2004: BI-FDTD: A Novel Finite-Difference Time-Domain Formulation for Modeling Wave Propagation in Bi-Isotropic Media IEEE Transactions on Antennas and Propagation 52(2): 416-425
Sato, M. 2008: Diagonally Staggered Grid for the Analysis of Elastic Wave Fields in Isotropic and Anisotropic Solids Using the Finite-Difference Time-Domain Method Japanese Journal of Applied Physics 47(5): 3931-3939
Ji, W.A.N.G.; Jingbo, L.I.N. 2005: A two-dimensional theory for surface acoustic wave propagation in finite piezoelectric solids J. Intell. Mater. Syst. Struct 16(7-8): 623-629
Xi-kui, L.; Hao-yang, Z. 2005: Partition of unity finite element method for short wave propagation in solids Applied Mathematics and Mechanics 26(8): 1056-1063
Wegner, J.L. 2004: Some aspects of thermodynamic effects in finite amplitude wave propagation in rubber-like solids Wave Motion 39(1): 21-39
Rouze, N.C.; Wang, M.H.; Palmeri, M.L.; Nightingale, K.R. 2013: Finite element modeling of impulsive excitation and shear wave propagation in an incompressible, transversely isotropic medium Journal of Biomechanics 46(16): 2761-2768
Zhu Jianlin; Dorman Jim 2000: Two-dimensional, three-component wave propagation in a transversely isotropic medium with arbitrary-orientation-finite-element modeling Geophysics 65(3): 934-942